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ABSTRACT  

The concept of resilience is present in many research fields today, aiming to understand and 

optimize a system’s behaviour against external disturbances. Yet, no resilience framework has been 

developed for airport terminal systems. This paper aims at transferring the resilience concept to 

airport terminal systems. Furthermore, resilience will be used to quantify the impact of disturbances 

on terminal systems with simulation modeling. The goal is here to obtain a basis for understanding 

and improving the performance at disruptive events. A resilience framework for airport terminal 

systems will be defined based on current literature about resilience definition and quantification. 

Moreover, a simplified terminal model will be set up in a simulation tool. With the model, different 

disturbance scenarios concerning the duration and the affected process station will be tested. At 

the same time, the general applicability of the simulation tool for resilience investigations will be 

verified and an input parameter sensitivity analysis will be conducted. Based on the simulation 

results, the reaction of the terminal system on external disruptions will be analyzed and basic 

insights about airport terminal resilience will be gained for the simplified terminal system. The 

simulations can later be extended to complex generic or real-world terminal systems in order to 

derive specific recommendations for action.  
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1. INTRODUCTION 

Infrastructure systems are often operating close to their maximum capacity (Mattsson and 
Jenelius 2015). This also holds for the airport infrastructure, as there is a high growth rate in aviation, 
while runway or terminal extensions at airports have to fulfill strict regulations and need to be 
planned long in advance (ICAO 2016). Incidents such as system failures or staff strikes therefore lead 
to high delays and understanding the behaviour of the airport terminal system during and after 
those disturbing events builds a desirable goal. This includes, for example, knowing after which 
intensity or duration of the disturbing event the airport can still return to normal operation.  

The resilience of a system provides information on how a system reacts on an external 
disturbance. The research about the term “resilience of systems” has been growing over the past 
years, just as the number of papers dealing with resilience has increased (Hosseini et al. 2016). 
Application areas vary from ecology, psychology or material science to infrastructure systems. Most 
of the studies in the field of resilience engineering deal with the definition of resilience (Righi et al. 
2015). For stated reasons, understanding the reaction of an airport terminal system to disturbing 
events with the goal of improving the resilience of the system has a clear motivation today. 
Therefore, this paper aims at establishing a resilience framework for airport terminal systems 
including a definition of resilience and measures to quantify resilience. Moreover, basic experiments 
about the airport terminal resilience will be conducted in simulations with a basic terminal model. 

The paper is structured as follows. In Section 2, definitions of the term resilience as well as 
metrics quantifying resilience will be specified based on a literature review. In Section 3, a resilience 
framework including a definition and appropriate metrics will be developed for airport terminal 
systems. A discrete event simulation of the airport terminal resilience with a basic terminal model 
will be described in Section 4. The analysis of the results in Section 5 and the conclusion in Section 6 
complete the paper.  

2. LITERATURE REVIEW 

The term resilience is defined in various disciplines such as psychology, material science, 
ecology, economics or engineering. The review of definitions in current literature will include those 
various disciplines. The focus for resilience measures will lie on engineering disciplines in order to 
obtain a suitable basis for the definition of key resilience indicators for the airport terminal system.  

2.1. Definition of Resilience 

The word resilience originates from the Latin word “resiliere”, which can be translated by 
“bounce back”. The online dictionary “Duden” defines resilience as psychological resistance or 
strength to survive difficult life situations without continuous impairments. According to (Grotberg 
1997), psychological resilience is the universal capability to refrain from, minimize and overcome 
negative external influences.  

In material science, resilience describes the physical property of a material to be elastic and 
return to the initial shape after having transformed due to stress application (Hoffman 1948). 
(Moench 2009) distinguishes between soft and hard resilience. Hard resilience is defined as the 
strength or hardness of a material or structure under applied pressure. Soft resilience is defined as 
the capability to absorb and regenerate from a disturbance. In that sense, soft resilience 
corresponds to the flexibility of a system. (Schultze 1996) defines ecological resilience as the 
strength of a disturbance which can be absorbed by a system without any structural changes of the 
system itself. The essence of economic resilience implies the mitigation of the effects caused by a 
disturbance to prevent losses (Rose and Liao 2005). A resilient social or ecological system is 
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furthermore characterized by the ability to withstand large disruptions through “adaptation and 
evolution”. Properties of resilient systems therefore include diversity, efficiency, adaptability and 
cohesion. Those properties can be specified more closely for economic systems or ecosystems. 
(Fiksel 2003) For (Li and Lence 2007) the resilience of infrastructures is defined as the ratio between 
failure and recovery probability.  

In the following, generally applicable definitions for the resilience of a “system” independent 
of the aforementioned disciplines will be reviewed. According to (Hollnagel 2006), resilience is the 
capability of a an organization or a system to maintain its function prior to, during or after a 
disturbing event. (Woods 2009) sets resilience as an adaptive capacity, which means that a system 
has the potential to adapt to changes. A system in general operates in an equilibrium and behaves 
in a certain way under normal conditions. A disturbing event unbalances the system and the 
performance is reduced. In this context, resilience is the ability of a system to minimize or reduce 
the amount and the duration of the performance loss after the disruption. (Proag 2014) The 
resilience of a system is furthermore defined by certain properties of the system. On the one hand, 
robustness is the ability of a system to withstand a disruption without a function loss. On the other 
hand, the redundancy of a system describes if and to what extent a system can be replaced in order 
to maintain functionality. Furthermore, the resourcefulness provides information on whether 
physical, technological or monetary funds are available. Finally, rapidity implies the ability of a 
system to return to the original performance level after a disturbance. (Bruneau and Reinhorn 2006) 
The absorptive, adaptive and restorative capability as a characteristic ability concerning resilience 
are introduced by (Nan and Sansavini 2017). The absorptive capacity implies the ability to reduce 
negative exterior impact and minimize the negative consequences for the system. This ability 
resembles the robustness referenced above. The adaptive capability describes the ability to adapt 
to the disturbance while the restorative capability, similar to the above mentioned rapidity, 
describes the ability to return to the original state after the disturbance.   

The definition of static and dynamic resilience also comprises the terms robustness and 
rapidity. While static resilience implies the ability to maintain functions during a disturbance, 
dynamic resilience is characterized by the time till recovery of the original state. (Rose 2007) 

As the environment of a system can change over time, new disturbances can appear and the 
resilience of a system has to be assessed in regular intervals. In a system of systems, a network of 
independent, complex systems, reactive and proactive resilience are defined. Reactive resilience 
comprises the compensation of other systems in case one system fails. Proactive resilience implies 
a new system configuration before a system can fail. This is achieved by a reduction of the overall 
system performance. (Uday and Marais 2013) 

The disturbance or failure itself is defined as root or reason for the change in the system 
performance, while the stress or perturbation marks the effect or consequences of the disturbance. 
The disturbance is characterized by type, frequency, intensity and duration. The perturbation is the 
answer of the system on the disturbance and can be transient or permanent, which means that the 
system can return to the original state or not. In this context, a resilient system will return to the 
reference state and show transient behaviour. (Gluchshenko and Foerster 2013) 

Concerning airport systems, there are only a few studies about resilience in current literature. 
The resilience of an airport is defined as the ability to stay operational with an appropriate security 
level (Chen and Miller-Hooks 2012). Furthermore, resilience is defined as the capability to withstand 
a disturbance and show a transient perturbation (Gluchshenko and Foerster 2013). 

As there are various definitions of resilience in literature, it is difficult to stress one uniform 
definition. (Woods 2015) groups the resilience concepts in literature into four main categories. The 
first category implicates the general return from a trauma respectively the return to the equilibrium 
situation. The second category puts resilience on a level with robustness, defined as the capability 
to absorb disturbances. Furthermore, resilience can be seen as an opposite to brittleness, 



 

 4 

comprising an elastic or flexible behaviour in borderline situations. The fourth category includes 
resilience as a network architecture which is able to adapt to new conditions. (Hosseini et al. 2016) 
stress that there are similarities between the definitions concerning the capability to absorb, adapt 
to and recover from disturbances.  

As it has been shown, resilience is compared to or equated with the terms of redundancy, 
robustness, rapidity or flexibility. It can be summarized that there are two dominating aspects, 
defining the resilience of a system dependent on the magnitude and the duration of the 
performance loss induced by a disturbance. The consequences on this definition on possible 
resilience measures will be discussed in the following subsection.  

2.2. Quantification of Resilience 

As stated above, the ability to reduce the performance loss after a disturbing event as well as 
the ability to quickly recover to the original state are both relevant for the resilience of a system. 
While the first aspect is often referred to as robustness, the latter can described with the term 
rapidity. The quantification of resilience can accordingly follow those two main definitions or 
combine both of them. 

In the following, the time dependent system performance is described with 𝑝(𝑡). The original 
system performance at the time 𝑡0 is 𝑝0 and the start time of the disturbing event is 𝑡𝑠. The minimum 
performance of the system after the disturbing event is 𝑝𝑚𝑖𝑛. The time after which the system starts 
to recover from the disturbance is 𝑡𝑟 and the time at which the system reaches a new stable state 
is 𝑡0

′ . The performance at the new stable state is 𝑝0
′  and can be equal to, lower or higher than 𝑝0. 

The system performance over time is shown in Figure 1 and can be measured either as a 
performance function such as throughput of passengers in an airport or cars in a road network over 
time. In this case, the performance curve drops after the disruptive event. The system performance 
can furthermore be characterized by a delay function such as queue length for passengers or cars, 
the delay time for aircraft or trains or the queuing time for the system users over time. In this case, 
the curve of 𝑝(𝑡) increases after the disruptive event. If not stated otherwise, the system 
performance in this section will be represented by the performance function. (Nan and Sansavini 
2017; Henry and Emmanuel Ramirez-Marquez 2012) 

 
Figure 1: System performance as performance (left) and delay function (right) before, during and after disturbance 

(adapted from (Nan and Sansavini 2017)) 

The transition between the performance levels 𝑝0, 𝑝𝑚𝑖𝑛 and 𝑝𝑜
′  might also be stepwise. The 

recovery starting at 𝑡𝑟 can be induced either by actions or strategies pursued after the disturbance 
or by an internal systemic relaxation after the disturbance. 

As stated above, one measure for the system resilience is the robustness, which is equal to 
the minimum performance 𝑝𝑚𝑖𝑛 of the system after the disruption (see Equation (2-1)) (Nan and 
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Sansavini 2017). In order to quantify the resilience of a system by its robustness, the “resilience 

efficiency” 𝑅(1) is defined in Equation (2-2) as the ratio of the minimum performance 𝑝𝑚𝑖𝑛 due to 
the disturbance and the normal system performance 𝑝0 (Proag 2014). 
 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = 𝑝𝑚𝑖𝑛 (2-1) 
 𝑅(1) =

𝑝𝑚𝑖𝑛

𝑝0
 (2-2) 

However, those definitions do not consider the system performance over time. It is neither 
recorded whether original performance is recovered at any time nor it is included how quickly the 
system can recover. In order to capture those two aspects of resilience, other measures need to be 
considered.  

Resilience as the ratio between recovered performance and performance loss after the 

disturbance (𝑅(2), see Equation (2-3)) forms another measure of resilience. The resilience 𝑅(2) 
consequently takes values between 0 and 1. According to this definition, a system is resilient if it is 
able to fully recover from the disturbance (resilience value 1). The system is not resilient if it stays 
at the disturbed state where 𝑝(𝑡) equals 𝑝𝑚𝑖𝑛 (resilience value 0). (Gama Dessavre et al. 2016) 
 

𝑅(2)(𝑡) =
𝑝(𝑡) − 𝑝min

𝑝𝑜 − 𝑝min
 (2-3) 

The gradient of the performance curve between the time of the minimum performance 𝑡𝑟 and 
the time of the return to a stable state 𝑡0

′  is a measure for the rapidity of the system to recover from 
the disturbance (Bruneau and Reinhorn 2006). The rapidity as the average gradient of the 
performance curve during the performance drop (see Equation (2-4)) and recovery (see Equation 
(2-5)) can be defined as follows. 
 

𝑅𝑎𝑝𝑖𝑑𝑖𝑡𝑦(𝑑𝑟𝑜𝑝) =
𝑝(𝑡𝑠) − 𝑝(𝑡𝑟)

𝑡𝑟 − 𝑡𝑠
 (2-4) 

 
𝑅𝑎𝑝𝑖𝑑𝑖𝑡𝑦(𝑟𝑒𝑐𝑜𝑣𝑒𝑟) =

𝑝(𝑡0
′ ) − 𝑝(𝑡𝑟)

𝑡0
′ − 𝑡𝑟

 (2-5) 

The rapidity of the system can also be measured by the time interval the system needs to 
recover. The time of deviation is defined as the time interval between the deviation from the initial 
performance at 𝑡𝑠 and the minimum system performance at 𝑡𝑟. In a highly resilient system, the time 
of deviation is significantly higher than the time of recovery. Accordingly, in a system with low 
resilience, the time of deviation is significantly lower than the time of recovery. A possible measure 

of resilience then comprises the ratio between the time of deviation and the time of recovery (𝑅(3), 

see Equation (2-6)) or the sum of both as the time of perturbation (𝑅(4), see Equation (2-7)). 
(Gluchshenko and Foerster 2013) 
 

𝑅(3) =
𝑡𝑟 − 𝑡𝑠

𝑡0
′ − 𝑡𝑟

 (2-6) 

 𝑅(4) = 𝑡0
′ − 𝑡𝑠 (2-7) 

Another possibility to include the function behaviour over time is comparing the area under 
the performance curve after the disruptive event and the area under a performance curve without 

any disruption, which is also referred to as “resilience quality” (𝑅(5), see Equation (2-8)). This metric 
takes values between 0 and 1. (Proag 2014) 
 

𝑅(5) =
∫ 𝑝(𝑡) 𝑑𝑡

𝑡0
′

𝑡𝑠

∫ 𝑝0 𝑑𝑡
𝑡0

′

𝑡𝑠

 (2-8) 

Similar to this approach, (Bruneau and Reinhorn 2006) define the resilience of an 

infrastructure as integral of the deviation from normal performance over time (𝑅(6), see Equation 
(2-9)). This metric can be extended by including several consecutive disturbing events (Zobel and 
Khansa 2014). 
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𝑅(6)(𝑡𝑒𝑛𝑑) = ∫ 1 −

𝑝(𝑡)

𝑝0
 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

 (2-9) 

The latter approaches combine the rapidity and the robustness aspect. The resilience measure 
itself, however, does not distinguish between systems with a high robustness and low rapidity and 
vice versa, as the area functions might lead to the same resilience value, see Figure 2. Consequently, 
for an integral examination of the resilience of a system, further measures need to be included. 

 
Figure 2: Performance function of two systems with equal resilience quality but different robustness and rapidity 

Dynamic resilience (𝑅𝑑𝑦𝑛, see Equation (2-10)) as a measure for the absorptive, restorative 
and adaptive capacity of the system is introduced by (Francis and Bekera 2014). The adsorptive 
respectively the adaptive capacity is defined as the ratio of the system performance at the minimum 
level respectively the recovered state compared to the original state. The restorative capacity is 
defined as the “speed of recovery” 𝑣𝑟. The speed of recovery depends on the time of final recovery 
and is approximated by an exponential function. The value of the dynamic resilience is not 
necessarily between 0 and 1.  
 

𝑅𝑑𝑦𝑛  = (
𝑝𝑚𝑖𝑛

𝑝0
) (

𝑝0
′

𝑝0
) 𝑣𝑟 (2-10) 

In order to quantify the resilience of a network, the importance of single network components 
can be quantified. (Barker et al. 2013) define vulnerability and recoverability as main drivers for the 
network resilience, similar to robustness and rapidity which have already been identified. They also 
define two component importance measures to quantify the influence of one network element on 
the resilience of the whole network. The ratio between the performance loss caused by a certain 
link failure and the maximum performance loss caused by any link failure, multiplied with the time 
to full recovery, describes one component importance measure. The other component importance 
measure is defined as the positive effect if one certain link cannot be disrupted.  

A metric including the robustness, the rapidity, the performance loss and the recovery ability 
is developed by (Nan and Sansavini 2017). The robustness and the rapidity have already been 
defined in the Equations (2-1), (2-4) and (2-5). The absolute performance loss equals Equation (2-9) 
multiplied with the original state performance 𝑝0.The integration limits can here be adapted to the 
disruptive phase where 𝑡𝑠 ≤ 𝑡 ≤ 𝑡𝑟 and to the recovery phase where 𝑡𝑟 ≤ 𝑡 ≤ 𝑡0

′ . The integral 
according to Equation (2-9) with the integration limits of 𝑡𝑠 and 𝑡0

′  and scaled by the duration of the 
time interval (𝑡𝑠−𝑡0

′ ) defines the time averaged performance loss, “𝑇𝐴𝑃𝐿”. The recovery ability is 

defined as 𝑅(2)(𝑡0
′ ) according to Equation (2-3). The overall resilience metric “𝑅(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)”merging 

the described factors results in the Equation (2-11). 
 

𝑅(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) = 𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 ∙
𝑅𝑎𝑝𝑖𝑑𝑖𝑡𝑦𝑟𝑒𝑐𝑜𝑣𝑒𝑟

𝑅𝑎𝑝𝑖𝑑𝑖𝑡𝑦𝑑𝑟𝑜𝑝
∙ (

𝑅(6)(𝑡0
′ ) ∙ 𝑝0

𝑡0
′ − 𝑡𝑠

)

−1

∙ 𝑅(2)(𝑡0
′ )   (2-11) 

p(t)

pmin1

pmin2

p0

tr2tr1 t0ts ‘t0

p1(t)

p2(t)

t
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This resilience indicator is dimensionless and takes positive values. A high robustness, high 
recovery ability and high recoverability increase the resilience. At the same time, a high 
performance loss and a high rapidity during the disruptive phase reduce the resilience. 

Various metrics defined in literature have been presented. On the one hand, there are static 
metrics linked to the robustness which do not depend on time (Equations (2-1), (2-2)). On the other 
hand, there are dynamic metrics, which can be calculated at any specific time (Equations (2-3), 
(2-9)). There are also metrics which can only be calculated after a new steady state is reached 
(Equations (2-5)-(2-8), (2-10), (2-11)). Some metrics only take values between 0 and 1 and therefore 
allow a direct assessment about whether the resilience is high or low (Equations (2-2), (2-8)). Others 
do take values above 1 depending on the chosen performance function. In this case, an evaluation 
of the resilience value is limited to comparisons with other equally scaled resilience values.  

3. RESILIENCE FRAMEWORK FOR AIRPORT TERMINAL SYSTEMS 

Based on the definitions and metrics for resilience extracted from literature (see Section 2), a 
framework for airport terminal systems will be set up in this section. In order to do so, the system 
boundaries and the performance indicators have to be determined.  

A system is defined as a group of interconnected single components, which form a complex 
entity (Meyer and Miller 2001). The airport terminal system is physically separated from the 
environment by the buildings’ walls. The throughput of the terminal can be measured by the 
passenger flow. Departing passengers enter the terminal, proceed through various process stations 
and leave the building boarding the aircraft. Arriving passengers deboard the aircraft, enter the 
terminal and leave the terminal after also passing different process stations. Baggage, staff and 
goods are also entering and leaving the terminal area but shall not be considered here. Instead, for 
now only departing passenger flows shall be considered. The departure flow includes several 
process stations the passengers need to pass in order to proceed to their gate and board their flight. 
The monitoring starts when passengers enter the terminal building and ends when they leave the 
building. The process stations considered in the basic terminal model will be specified in Section 4. 
While some process stations in the terminal like the check-in kiosk and the check-in desks can be 
traversed in parallel, most of the process stations like the boarding pass control and the security 
control have to be concluded one after the other. Consequently, if one process station breaks down, 
this failure is interrupting the whole passenger flow. Performance indicators for the terminal system 
are the passenger throughput in a certain time as well as the average or absolute time one 
passenger needs from entering to leaving the terminal area (referred to as system time), but also 
passenger-specific delay or queuing times. The throughput forms a performance function which 
would decrease after a disruptive event. The passengers’ system time, queuing time or delay would 
imply delay functions increasing after a disruptive event. All presented performance indicators, 
except for the system time, can be assessed for a single process station in the terminal or for the 
overall terminal system. 

Referring to the generic definitions of resilience in Section 2.1, the resilience of an airport 
terminal system can be defined as the ability of the terminal system to absorb, adapt to and recover 
from external disturbances. Electronic system failures, power outages, staff strikes or terroristic 
attacks are examples of external disturbance influencing the processes in the terminal area. 
Moreover, scenarios affecting the arrival and departure of passengers like traffic jams, public 
transport delays or major flight delays can affect the internal airport terminal procedures. A resilient 
terminal system shows robustness and rapidity in order to be able to minimize and withstand those 
external disturbances. This implies for example that if one or several process stations fail for a 
certain time, the passenger throughput does not drop “too far” and reaches a stable level again 
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after a preferable short time, or that the queuing times rise at the affected station but decrease 
again as soon as possible. 

As the metrics presented in Section 2.2 are generic depending on the systems performance 
indicator, all of them are theoretically applicable on an airport terminal system. In the following, 
selected metrics will be combined to enable a comprehensive resilience evaluation for airport 
terminal systems.  

In order to consider the robustness as well as the rapidity of the terminal system, and in order 
to be able to distinguish between both capabilities, three resilience metrics (𝑅𝑡1, 𝑅𝑡2 and 𝑅𝑡3) will 
be defined. To capture the maximum performance loss of the terminal system, the absolute 
robustness 𝑅𝑎𝑏𝑠

𝑡1  (see Equation(3-1)) as well as the relative robustness 𝑅𝑟𝑒𝑙
𝑡1  (“resilience efficiency”, 

similar to Equation (2-2)) form the first metric. In case the passengers’ queuing time or system time 
are set as performance function, the absolute robustness equals 𝑝𝑚𝑎𝑥 and the relative robustness 
equals the inverse of Equation (3-2). The relative robustness takes values between 0 and 1.  
 𝑅𝑎𝑏𝑠

𝑡1 = 𝑝𝑚𝑖𝑛 (3-1) 
 𝑅𝑟𝑒𝑙

𝑡1 =
𝑝𝑚𝑖𝑛

𝑝0
 (3-2) 

As a measure for the rapidity of the system, the time of disturbance is set into relation with 
the time of recovery (𝑅𝑡2, see Equation (3-3)). It is assumed that a disturbance like a system failure 
or a strike is not a timely isolated event, but a continuing stress starting at 𝑡𝑠,𝑠𝑡𝑎𝑟𝑡  and ending at 
𝑡𝑠,𝑒𝑛𝑑. This metric consequently is not applicable for isolated events such as a terroristic attack and 
takes values between 0 and 1. If the system recovers instantly once the disturbance ends, the 
resilience corresponds to 1. The longer the time of recovery continues, the lower the resilience. An 
infinite time of recovery, which means that there is no recovery, corresponds to a resilience of 0. 
 

𝑅𝑡2 =
𝑡𝑠,𝑒𝑛𝑑 − 𝑡𝑠,𝑠𝑡𝑎𝑟𝑡

𝑡0
′ − 𝑡𝑠,𝑠𝑡𝑎𝑟𝑡

 (3-3) 

The third metric 𝑅𝑡3 combines both aspects of robustness and rapidity and corresponds to the 
resilience quality (see Equation (2-8)). As integration limits, the investigated time interval limits are 
chosen. In case a delay function is chosen as performance indicator, the inverse needs to be 
calculated in Equation (3-4). The resilience quality takes values between 0 and 1.  
 

𝑅𝑡3 =
∫ 𝑝(𝑡) 𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡0

∫ 𝑝0 𝑑𝑡
𝑡𝑒𝑛𝑑

𝑡0

 (3-4) 

For the assessment of the resilience of an airport terminal system, three metrics have been 
described. For an overall resilience evaluation, those metrics can be combined to one resilience 
indicator 𝑅𝑡, see Equation (3-5). The resilience indicator 𝑅𝑡 takes values between 0 and 1, as 
𝑅𝑟𝑒𝑙

𝑡1 , 𝑅𝑡2 and 𝑅𝑡3also take values between 0 and 1. The value of 1 corresponds to a high resilience 
while the value of 0 corresponds to a low resilience.  
 𝑅𝑡 = 𝑅𝑟𝑒𝑙

𝑡1 ∙ 𝑅𝑡2 ∙ 𝑅𝑡3 (3-5) 
In order to define and quantify resilience, possible failures and their type, frequency, intensity 

and duration also need to be defined. For the purpose of starting basic experiments in this paper, 
the complete failure of one process station at a certain time during the day will be assumed in 
Section 4. The duration will be varied. 

If no internal actions, such as reserve staffing or redundant system substitutes, are started 
and a system operates at 100% of the theoretical capacity, delays following the disturbance cannot 
be compensated respectively caught up by the system. The system cannot recover and stays at a 
reduced performance level. In this case, the metrics 𝑅𝑡2 equals 0. The combined metric also equals 
0 and the system is not resilient. In this context, all resilience investigations in Section 4 need to be 
evaluated according to the capacity utilization rate of the terminal system, which gives information 
about how close to the capacity limit the system is operating. 
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4. SIMULATION OF THE AIRPORT TERMINAL RESILIENCE 

While simple models might still be solved analytically, more complex terminal systems require 
simulation modeling. Queuing theory for example forms a mathematical discipline to analytically 
solve queuing systems. However, this approach is limited to exponentially distributed service times 
and reaches a limit after a certain level of complexity. (Borshchev 2013) As the presented simple 
terminal model is supposed to be further enlarged and modified to a complex generic terminal 
model, the investigations here are conducted with a simulation tool and not analytically. 

4.1. Model Setup 

A deterministic, discrete event simulation model is set up in AnyLogic (The AnyLogic Company 
2019). While the deterministic character facilitates reproducible results, the discrete event 
modeling method is appropriate to model “a sequence of operations being performed across 
entities”. (Borshchev 2013) 

The basic terminal model consists of two check-in process stations, one boarding pass control 
and one security control. The structure of the model is shown in Figure 3. Walking times are not 
considered. The purpose is yet not to map the complete, complex terminal system but to show the 
applicability of the simulation tool and to gain basic insights about the resilience of a terminal 
system. As performance indicator, the system time is chosen. The current passenger system time 
can be measured as a function over time. One day of operations is simulated. The absolute 
robustness of the disturbed system therefore equals the maximum system time during the day. The 
relative robustness corresponds to the ratio of the maximum system time without and with 
disturbance and will be referred to as 𝑅𝑡1 in the following. The rapidity is defined in Equation (3-3). 
The metric 𝑅𝑡3 equals the ratio of the sum of the system time over all departing passengers during 
the day without and with disturbance. Consequently, the metric 𝑅𝑡3 corresponds to the ratio of the 
average passenger system time during the day without and with disturbance.  

 
Figure 3: Simulation model in AnyLogic 

As the processing times are dependent on the passenger type, the number of bags or the 
travel experience of the passenger, this parameter can take values in a certain range depending on 
the simulated airport. In this case, there is no specific airport providing information from historical 
data or existing predictions. The process times for the check-in counters, the boarding pass control 
and the security control are therefore defined based on values found in literature. In this case, the 
processing times used in the baseline scenario of the Eurocontrol CDM landside modeling (Kohse 
and Roeher 2007) are selected as initial values.  

Concerning the flight plan, two different passenger arrival patterns are modelled. One pattern 
equals the simplest case of a constant passenger arrival rate and the other equals a normal 
distribution, which is applied to a flight plan of one hourly departing flight. The normal distribution 
complies with the effect that passengers arrive with a pattern depending on their flight departure 
time (Alodhaibi et al. 2019). The number of passengers per hour is equal for both rates. For a 
variation of the occupancy at a process station, the process time and the passenger arrival rate have 
to be adjusted relative to each other. An in- or decrease of the process time at a service station leads 
to an in- or decrease in occupancy, assuming the passenger arrival rate stays the same. An in- or 
decrease of the passenger arrival rate at a service station leads to an in- or decrease in occupancy, 
assuming the process time stays the same. Consequently, in a sensitivity analysis of the input 



 

 10 

parameters processing time, passenger arrival rate and capacity utilization, the correlation between 
those parameters always needs to be considered.  

The capacity utilization of the overall terminal system is determined by the bottleneck of the 
system, which is the process station with the highest occupancy. Assuming that all passengers pass 
the check-in, the boarding pass control and the security control in this order and considering the 
maximum processing time of 120 seconds at the check-in, the maximum capacity of the system is 
60 passengers (PAX) per hour. Consequently, a 100% occupancy equals a passenger arrival rate of 
60 PAX/hour, while a 50% occupancy equals a passenger arrival rate of 30 PAX/hour. 

An overview of all input- and output parameters is shown in Figure 4. To assess the sensitivity 
of the model on the named input parameters, several simulations are conducted. The simulated 
parameter variations are described in the following subchapter.  

 
Figure 4: Model input and output parameters 

4.2. Parameter Variation 

As explained in Section 4.1, the passenger arrival rate as well as the processing time and 
occupancy of the service stations will be varied in the simulations. A modification of the occupancy 
of the check-in process stations (and consequently the whole terminal system) implies a change in 
the passenger arrival rate or the process time, as described in Section 4.1. In this case, the passenger 
arrival rate will be modified. The arrival rate at the security control depends on the service rate of 
the check-in and boarding pass station and is consequently not modifiable without changing the 
other process stations properties. Consequently, the occupancy of the security control is changed 
by modifying the process time of the security control. Moreover, different disturbance events are 
modelled. In order to characterize those events, the duration of the disturbance and the affected 
process station are varied. In this context, the failure of the check-in process station as well as the 
security control is simulated, in each case with the duration of 0.5, 1, 2 and 4 hours. The varied 
parameters and the range of values are listed in Table 1. 

Table 1: Simulated parameters and range of values 

Parameter Range 

Occupancy at process station/terminal system [%] {50; 60; 70; 80; 90; 100} 

Passenger arrival rate [PAX/h] {30; 36; 42; 48; 54; 60} 

Duration of disturbance [h] {0.5; 1; 2; 4} 

Affected process station check-in; security 

Processing times at check-in, boarding pass control, 
security control [sec] 

120; 6; {30; 35; 36; 42; 48; 54; 60} 

Passenger arrival pattern constant rate; normal distribution 

Basic Terminal 
Model in AnyLogic

Input Parameters Output Parameters

- PAX arrival pattern
- Number of PAX/h
- Processing Times
- System occupancy *
- Process station

occupancy *

- PAX system time
- PAX queuing time
- Number of PAX/h 

(hourly PAX through-
put)

* calculated depending on other input parameters
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5. RESULTS 

5.1. Disturbance at the Check-in Process Station 

The resilience indicators 𝑅𝑡1, 𝑅𝑡2, 𝑅𝑡3 and 𝑅𝑡 of the system with the simulated occupancies 
and passenger arrival rates of the system as well as different durations of disturbance at the check-
in are shown in Figure 5. With a constant passenger arrival rate, the metric 𝑅𝑡1, which is a measure 
for the robustness, does not depend on the occupancy of the system. The minimum value for 𝑅𝑡1 
equals 0.011 at the highest simulated duration of disturbance (4 h) and the maximum value equals 
0.082 at the lowest simulated duration of disturbance (0.5 h). Consequently, 𝑅𝑡1 and the robustness 
of the system strongly depend on the duration of the disturbance. With a normally distributed 
passenger arrival rate, the value of 𝑅𝑡1 is dependent on the occupancy and increases starting at the 
occupancy of 80%. This can be explained by the fact that the maximum system time without a 
disruption increases with the normal distribution starting at the occupancy of 80%. The passenger 
arrival rate is not constant anymore and there are times with a comparably higher arrival rate and 
comparably higher queuing times. Therefore, the minimum value for 𝑅𝑡1 with the normally 
distributed rate equals 0.011 at the highest simulated duration of disturbance (4 h) and the 
maximum value equals 0.182 at the lowest simulated duration of disturbance (0.5 h). If robustness 
is determined by the maximum system time, a highly balanced system with low maximum system 
time is less robust in the simulated experiment as the maximum system time is increasing with a 
higher percentage. For a constant arrival rate, the indicator 𝑅𝑡1 does not depend on the overall 
system occupancy, for a normally distributed arrival rate it does. 

The indicator for rapidity, 𝑅𝑡2, does not depend on the duration of the disturbance for the 
constant arrival rate. Moreover, a linear correlation between 𝑅𝑡2 and the occupancy can be 
observed. The only exception for this forms the value at 90% occupancy with a disruption of 4 hours, 
which equals 0 as the steady state is not reached again during the considered time interval. The 
minimum value for 𝑅𝑡2 equals 0 at the occupancy of 100% independent of the duration of the 
disruption and at the occupancy of 90% in combination with a disruption of 4 hours. In this case, the 
system time does not reach the value before the disruption during the considered time interval. The 
maximum value equals 0.5 and is reached at the occupancy of 50% independent of the duration of 
the disruption. The observation that 𝑅𝑡2 linearly depends on the occupation can be explained as 
follows. The more spare capacity the system has, the more accumulated queuing people can be 
processed per hour and the quicker the system time is reduced after the disruption ends. The 
normally distributed arrival rate shows a very similar curve concerning 𝑅𝑡2. Therefore, the arrival 
rate does not show a significant influence on the indicator 𝑅𝑡2 in the simulated experiments. 

The resilience indicator 𝑅𝑡3 combines both the rapidity and the robustness of the system. As 
shown in Figure 5, 𝑅𝑡3 depends on the occupancy as well as on the duration of the disturbance for 
both simulated arrival rates. Consequently, 𝑅𝑡3 takes comparably higher values for low occupancies 
and low durations of disturbance. The maximum value for 𝑅𝑡3 with the constant rate equals 0.808 
at the lowest simulated duration of disturbance (0.5 h) and the lowest occupancy (50%). The 
minimum value equals 0.012 at the highest simulated duration of disturbance (4 h) and the highest 
occupancy (100%). While the curve of 𝑅𝑡2 has a linear shape, the curve of 𝑅𝑡3 has a parabolic shape 
rapidly decreasing at high occupancies. The values of 𝑅𝑡3 for the normally distributed arrival rate 
are slightly higher compared to the constant rate. This might be explained by the fact that the 
normally distributed rate is lower at the end of the disturbance. From that follows that directly after 
the end of the disturbance, more accumulated waiting passengers can be processed and the time 
of recovery is shorter. However, the deviations are very small with a maximum of 0.054 at an 
occupancy of 100% and a duration of disturbance of 0.5 hours. 
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The resilience indicator 𝑅𝑡 is the product of the three indicators 𝑅𝑡1, 𝑅𝑡2 and 𝑅𝑡3. 
Consequently, 𝑅𝑡 depends on the occupancy of the system and the duration of the disturbance, see 
Figure 5. The maximum value for 𝑅𝑡 with the constant rate equals 0.033 at the lowest simulated 
duration of disturbance (0.5 h) and the lowest occupancy (50%). The minimum value equals 0 at the 
highest simulated duration of disturbance (4 h) and the highest occupancy (100%). The maximum 
values for the normally distributed arrival rate are equal to those for the constant rate. There is a 
slight deviation between the curves of the constant rate and the normally distributed rate, especially 
for a disturbance of 0.5 hours. The shape of the curves is not linear, as the curves have a comparably 
higher gradient at small occupancies.  

 

Figure 5: Resilience indicators for check-in process station with constant (cr) and normal distributed (nd) passenger 
arrival rate 

5.2. Disturbance at the Security Process Station 

The resilience indicators of the system with the simulated system occupancies and passenger 
arrival rates as well as different durations of disturbance at the security control are shown in Figure 
6. While the occupancy of the check-in station is equal to the overall system occupancy, the 
occupancy of the security here is not directly affected by the passenger arrival rate but determined 
by the processing time of 35 seconds and therefore stays constant at a level of 58.3%. The results 
of a varied occupancy of the security control are shown in Figure 7 and will be discussed in 
Subsection 5.3. The results shown in Figure 6 typify the disturbance of a process station which is, in 
contrast to the check-in discussed above, not the bottleneck of the system. Therefore, even at the 
maximum system occupancy of 100%, there are spare capacities at the affected process station. 
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As observed for the check-in process station, the metric 𝑅𝑡1does not depend on the occupancy 
of the system when a constant arrival rate is applied. The minimum and maximum value for 𝑅𝑡1 
equal the respective values for the disturbance at the check-in station. Consequently, the 
robustness does not depend on the affected process station in the simulated experiments with the 
constant arrival rate. With a normally distributed passenger arrival rate, the value of 𝑅𝑡1 increases 
starting at the occupancy of 80%. This effect was already observed for the check-in process station. 
The minimum value for 𝑅𝑡1 with the normally distributed rate equals 0.011 at the highest simulated 
duration of disturbance (4 h) and the maximum value equals 0.188 at the lowest simulated duration 
of disturbance (0.5 h). The metric 𝑅𝑡1 consequently is slightly higher for high occupancies and a 
normally distributed arrival rate compared to the results for the disturbed check-in station.  

The indicator 𝑅𝑡2 does again show very similar curves for different durations of the 
disturbance at a constant arrival rate. As in Subsection 5.1, a linear correlation between 𝑅𝑡2 and the 
occupancy can be observed. The main difference is the higher level of the values of 𝑅𝑡2. This higher 
level, which is equal to lower times of recovery, can be explained by the spare capacities at the 
security control due to the constant occupancy of 58.3%.The minimum value for 𝑅𝑡2 equals 0.415 
(and not 0) at the occupancy of 100% independent of the duration of the disruption. The system 
time does reach the respective value before the disruption during the considered time interval for 
all considered occupancies and durations of disturbance. The maximum value equals 0.704 (and not 
0.5) and is reached at the occupancy of 50% and a disruption of 4 hours. As in 5.1, the normally 
distributed arrival rate shows a very similar curve concerning 𝑅𝑡2. However, the values for a 100% 
occupancy of the system are lower compared to the constant rate, especially for 0.5 and 1 hour of 
disturbance. The minimum value equals 0.284 at 1 hour of disturbance and an occupancy of 100%. 
Consequently, with increasing system occupancy the arrival rate has an influence on 𝑅𝑡2, especially 
for the occupancy of 100%. 

The resilience indicator 𝑅𝑡3 shows a strong dependency on the duration of disturbance, but 
not on the occupancy. For the constant arrival rate, the curves have a slight negative gradient with 
a maximum value of 0.854 at a disturbance of 0.5 hours with an occupancy of 50% and a minimum 
value of 0.053 at a disturbance of 4 hours with an occupancy of 100%. Those values are slightly 
higher than the values in Subsection 5.1. For the normally distributed arrival rate, the curves are 
very similar with one exception, which concerns the values at a 100% occupancy. As this parameter 
already led to a comparably high robustness and a low maximum system time, also the average 
system time does not increase as much compared to the scenario without disturbance. One 
conclusion might again be that a highly balanced system with low average system time without a 
disruption is less resilient in the simulated experiment as the average system time with a disruption 
is increasing with a higher percentage. 

For the constant arrival rate, the combined resilience indicator 𝑅𝑡 shows a decreasing trend 
with increasing occupancy or increasing duration of disturbance. The maximum value for 𝑅𝑡 with 
the constant rate equals 0.047 at the lowest simulated duration of disturbance (0.5 h) and the 
lowest occupancy (50%). The minimum value equals 0 at the highest simulated duration of 
disturbance (4 h) and the highest occupancy (100%). The values of 𝑅𝑡 are consequently higher than 
the values in Subsection 5.1. For the normally distributed arrival rate, the maximum of 𝑅𝑡 equals 
0.051 at an occupancy of 100% and a disturbance of 0.5 hours. The respective maximum for each 
duration of disturbance is found at 100% occupancy. This follows from the maxima of the indicators 
𝑅𝑡1 and 𝑅𝑡3 at this occupancy  

In general, the influence if the system occupancy is clearly reduced when the security control 
is affected. Moreover, the passenger arrival rate has a clear influence on the resilience indicators, 
especially when the system occupancy equals 100%.  
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Figure 6: Resilience indicators for security process station with constant (cr) and normal distributed (nd) passenger 
arrival rate 

5.3. Comparison of Disturbance at the Check-in and the Security Process Station 

The results of a varied occupancy of the security control and the check-in (see Subsection 5.1) 
at a constant passenger arrival rate are shown in Figure 7. While the occupancy of the overall system 
is varied when the occupancy of the check-in is modified, the occupancy of the system stays at 100% 
when the processing times of the security control and at the same time the occupancy of the 
security control are varied.  

The results for both process stations are very similar. The resilience indicator 𝑅𝑡1 for the 
disturbed security control takes values between 0.011 and 0.094 and increases slightly with 
increased occupancy at the security control. For the 50% occupancy, the simulated values for 
disturbed security and check-in process station are equal. The curve for the disturbed security 
control, however, shows a slightly increasing trend for an increasing occupancy of the respective 
process station while the curve for the disturbed check-in stays constant.  

The resilience indicator 𝑅𝑡2 is equal for both disturbed process stations and therefore, based 
on the simulation results, does not depend on the affected process station if the station’s occupancy 
is equal.  

Considering 𝑅𝑡3, for short disturbances (0.5 h, 1h) there are slight deviations between the 
affected process stations. The maximum deviation is 0.031 at a disturbance of 0.5 hours and an 
occupations of the respective process station of 90%. If there is a deviation, the 𝑅𝑡3 values for the 
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affected security control are mostly slightly higher than those of the affected check-in stations, 
especially for high occupancies. 

The comparison of 𝑅𝑡 shows that for low occupancies, the indicator for the affected check-in 
stations is higher while for high occupancies, the indicator for the affected security control has 
higher values. The maximum deviation between both values is 0.0015 at a disturbance of 0.5 hours 
and an occupancy of 50%. The differences concerning the occupancy of 100% are nulled as 𝑅𝑡2 
equals 0 in this case. 

 

Figure 7: Resilience indicators for check-in and security process station with constant passenger arrival rate (cr) and 
depending on the occupancy of the respective process station 

5.4. Plausibility of the results 

In order to prove the plausibility of the results, the maximum system time and the recovery 
time of the system can be calculated analytically for the constant rate. The maximum system time 
is the sum of the disruption time and the time the system needs to compensate the queue resulting 
from the disruption. For example, at a 50% occupancy with a disruption of 0.5 h, the first passenger 
suffering from the disruption waits 1,800 seconds and otherwise processes the system in 161 
seconds (sum of all processing times). The system time without disruption equals 161 seconds, the 
maximum system time with disruption equals 1,961 seconds. Consequently, the robustness equals 
0.082, which was also calculated in the simulations (see Subsection 5.1). Furthermore, the time of 
recovery is the sum of the time of disruption and the time the system needs to dissolve the 
assembled queue at the check-in stations. At a 50% occupancy with a disruption of 0.5 h, this would 
equal the 1,800 seconds of the disruption and additional 1,800 seconds the system needs to process 
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the additional waiting 15 passengers with the spare capacity of 30 passengers per hour. The 
resulting value of 0.5 for 𝑅𝑡2 was also determined in the simulations. The results from the simulation 
therefore equal the results from test calculations and can be regarded as plausible values.  

6. CONCLUSION  

In this paper, various definitions and measures for resilience have been presented in a 
literature review. Based on the literature review, a resilience framework for airport terminal 
systems has been introduced including a definition of resilience as well as four resilience indicators. 
The resilience indicators include the aspects of robustness, rapidity and a combination of both.  

In a discrete event simulation, the resilience framework was applied to a basic terminal model. 
An input parameter sensitivity analysis was conducted by varying the input parameters “system 
occupancy”, “passenger arrival rate” as well as “processing time”. Furthermore, the duration of the 
disturbance and the affected process station were modified. 

The results showed that for a constant arrival rate, the indicator 𝑅𝑡1 for the robustness of the 
system was independent of the system occupancy, while the indicator 𝑅𝑡2 for the rapidity was 
independent of the duration of the disturbance. Furthermore, for constant arrival rates the other 
combined indicators 𝑅𝑡3 and 𝑅𝑡 were depending on both the occupancy and the duration of the 
disturbance. The normally distributed arrival rate led to a deviation of the resilience indicators 
especially concerning a high occupancy and concerning the indicator 𝑅𝑡1. Regarding the affected 
process station, the results for equally varied occupancies at the respective process stations showed 
similar resilience indicator values. Regarding the comparison at equal system occupancies but 
different process station occupancies, there were higher deviations, especially for the normally 
distributed rate in combination with high system occupancies. Moreover, the general applicability 
of the simulation model could be demonstrated by plausibility calculations.  

It can be stated that the combination of timely dependent arrival patterns, high system 
occupancies and unequal process station occupancies is closest to reality. Consequently, more 
complex dependencies on occupancy and arrival rate can be expected and further simulations need 
to be conducted. In order to gain more insights, the model can additionally be enlarged by further 
process stations like a passport control, a check-in kiosk or a gate control. Furthermore, the intensity 
of the disruption can be varied or the failure of parallel process stations can be examined. Finally, in 
order to gain specific recommendations for the operation of airport terminals, a more complex 
model like a generic terminal model or an airport specific model should be generated.  
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