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Abstract
In traffic networks like railway lines or roads, capacity is often limited by certain critical
areas like junctions or single-tracked sections, which can be seen as servers with multiple
queues for jobs arriving from different directions. The behaviour of these servers can be
quite complex. For example, it might be possible to process jobs from several queues si-
multaneously, but not for all possible combinations. Service times can be deterministic or
random, and in both cases they might depend on which queue is served, and on some inter-
nal state of the server. This work presents an approach to model such a system by Markov
chains or Markov processes, with a multi-dimensional state space that is composed of the
number of jobs in each queue, and possibly a finite number of internal states. Apart from
the given constraints of the system (e.g. which queues can be served simultaneously), the
transitions of the Markov model also describe the chosen service strategy. Thus, it is pos-
sible to compare the performance of different service strategies, as well as the performance
of different systems (e.g., an existing at-grade junction and a grade-separated new version
of that junction). The model is tunable to meet different service characteristics and is tested
by comparison to simulation.
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1 Introduction

1.1 Motivation

Accommodating the expected growth of European rail freight traffic (Commissie (2011))
poses a major challenge in operating railway infrastructure. Many railway lines and nodes
are already heavily loaded and approaching the limits of capacity. A precise determination
of the performance of railway facilities, possible bottlenecks as well as the optimization of
operations therefore are of great importance.

The most common approaches currently used in capacity modelling either rely on the
infrastructure’s utilization (e.g., schedule compression according to UIC Code 406 (UIC



(2013)) or stochastic and queueing-based methods (see e.g. Fischer and Hertel (1990);
Nießen (2014)). While utilization-based descriptions are easy to understand and implement
they are highly dependent on schedule structure and hard to relate to the quality of opera-
tions. This can be achieved by the second class of stochastic and queuing based models by
defining a level of service based on punctuality, queue lengths or waiting times. However,
queueing-based models only allow for a generic consideration of operation and dispatching
strategies.

Besides those two modeling types, a large number of scheduling-based papers investi-
gating timetable robustness, e.g. (Andersson et al. (2013); Liebchen et al. (2009, 2010)),
and the effectiveness of dispatching decisions (Cacchiani et al. (2014); Corman (2010);
Narayanaswami and Rangaraj (2011); Dariano et al. (2007)) has been published. Here, the
focus is on tactical or operational planning when schedules are known or basic properties
such as schedule periodicity are known (Sparing and Goverde (2013)). Optimization-based
planning tools are complemented by microscopic (Radtke and Hauptmann (2004); Janecek
and Weymann (2010); Weymann and Nieen (2015)) or macroscopic simulation approaches
(Büker and Seybold (2012); Goverde (2007)) for investigating the evolution of timetable
stability. In long term capacity planning, where schedules are unknown or may still evolve
in time or infrastructure adjustments are assessed, the usability of MIP- and simulation-
based approaches is limited. In order to cope with data input uncertainty a large number of
problem instances has to be calculated which makes these approaches very time consuming.

The aim of this paper is to present an efficient Markovian model which can be used
to determine and evaluate the performance of railway systems. Unlike existing stochastic
and queueing-based models the new approach allows to incorporate heuristically motivated
strategies commonly used by dispatchers and can easily be adapted to meet different sys-
tem requirements or operation guidelines. Besides being applicable for assessing existing
railway infrastructure and allowing to evaluate different operating strategies, the approach
is also provides insights into the implications of infrastructure adjustments.

1.2 Related Work

Stochastic models have successfully been applied in the capacity analysis of railway lines,
junctions and stations for several decades. They can be subdivided into approaches where
line segments or stations are analyzed individually (see e.g. Nießen (2014) for an overview)
and models, where subnetworks consisting of multiple lines can be analyzed (Huisman
et al. (2002)). Whereas the first class of models is suited to analyze and compare different
infrastucture variants, the second class focuses on network routing effects.

For dimensioning the number of tracks in station, loss probabilities in GI/D/n/0
(Potthoff (1965)) and waiting probabilities in GI/GI/n/∞ queueing systems have been
used (Hertel (1984)). Railway lines and station threads have also been assessed based
on stationary waiting times and queue lengths obtained in queueing based system descrip-
tions (Schwanhäußer (1974, 1994); Wendler (2007); Weik et al. (2016)). Here, the system
is mapped to (effective) single channel queueing systems (Schwanhäußer (1974, 1994)),
where service times may be adjusted to account for mutually non-exclusive train routes
(cf. Nießen (2013)).

A more detailled account of correlation effects between different infrastructure seg-
ments in railway networks is given by queueing network descriptions. In (Huisman et al.
(2002)), a railway subnetwork has been modelled by a Jackson queueing network (Huisman



et al. (2002)). However, the solvability properties of Markovian queueing networks are not
preserved if more general arrival and service processes are to be considered.

The concept of Markov chains and Markov processes is well-known, the same holds
for the method of modelling a M/GI/n/m queueing systems using Markov chains (Bolch
et al. (2006b); Gelenbe et al. (1998); Kleinrock (1975)). Apart from (rail) traffic networks,
it has also been used in the performance analysis of computer systems (Gelenbe and Mitrani
(2010); Lazowska et al. (1984)) and communication networks (Bertsekas et al. (1992); Clark
(1991)). In the latter, results derived decades ago for fixed line networks have recently
become relevant again, in the advent of mobile networks with scarce resources.

1.3 Our Contribution

The approach discussed in this paper is aimed at complementing existing queuing-based ap-
proaches in individual modeling of infrastructure segments. It exceeds existing approaches
in being able to accommodate for different operating strategies apart from FCFS-based ser-
vice discipline or specific priority-based dispatching rules (Schwanhäußer (1974)) discussed
so far. The consideration of phase-type distributed service times ensures a great deal of flex-
ibility and allows to realistically model occupation times for a wide range of infrastructure
layouts and train characteristics. At the same time all the advantages of a Markovian ap-
proach including the exact calculation of queue length distributions are kept.

The model is thought to be relevant in the planning of new railway infrastructure projects,
evaluation of potentially dispensable infrastructure and improving the match between in-
frastructure variants and operation strategies. As an exemplory application, the model is
used to compare the delay built-up at grade-separated and at-grad line junctions. While a
MIP-based analytical model to model railway nodes and junctions has been presented in
(Mussone and Calvo (2013)), it does not seem to account for guiding system specifications.
An alternative approach allowing to estimate knock-on delays in at grade junctions in (Yuan
(2006)) focuses on stochastic modelling of delay propagation. To the best of the authors
knowledge, however, a direct analysis focussing on different infrastructure variants at rail-
way junctions has not been given so far and is to be provided based on our new Markovian
modelling approach.

2 Preliminaries

In the context of railway junctions two main classes of infrastructure variants exist: at-grade
and grade-separated junctions. Figures 1 and 2 represent the two variants for a double track
junction between the three stations A, B and C. The colored arrows show the possible train
paths: Whereas train paths of trains starting or ending in B and C are unique, trains starting
in A can proceed either to B or to C at the junction.

In both cases trains on route C → A and B → A compete for the right of way at the
junction. In the at-grade case (portrayed in Figure 1) routes A→ C and B → A conflict in
addition. These conflicts (red arrows) are eliminated in grade-separated junctions (Figure
2) with a tunnel or bridge.

This relatively simple looking example of a junction is nevertheless quite illustrative
since it shows the capability of the model and raises several questions.

One question arising for a junction is whether and how much the grade-level influences
the capacity, i.e., the number of trains that can operate at a given time and of a given level of



Figure 1: An at-grade junction Figure 2: A grade-separated junction

quality on the segment. It can be answered by measuring either the expected length of each
waiting queue or the expected time a train has to wait for the right to pass the junction.

Another question comes from the operational point of view whether to build a bridge or
tunnel, e.g. a grade-separated junction. For the associated capacity it is clearly an advantage,
but on the other hand the construction is more expensive and consumes more space which
can in some cases be rare. A supportive evaluation of the situation is as seen important.

3 Analytical Model

To compute analytical results, the stochastic process X(t), which represents the behaviour
of the system, has to be defined by a well-known model like a Markov chain or a Markov
process. In a system with K queues for jobs coming from K different directions, the state
space S = {(k1, . . . , kK , f) | kj ∈ N0, f ∈ F} typically consists of the lengths of the
queues k1, . . . , kK , and possibly an internal state f from a finite set F .

For practical reasons the length of the queues has to be finite since the equations for
the stationary state have to be solved by mathematical software. Therefore the original
(unlimited) system is approximated by the maximum length of a queue kmax <∞.

3.1 Markov Chain

A Markov chain (Gelenbe et al. (1998)) describes the system state at discrete points in
time. Typically, these events are determined for example by a job leaving the system after
its service has ended. While arbitrary distributions are possible for the service times, the
arrival processes have to be Poisson processes with memoryless interarrival times, to ensure
that the sequence of system states at the events forms a Markov chain.

Let Dn be the time the n-th service time ends, and Xn = X(Dn+) the system state
at that time. Depending on that state Xn = (k1, . . . , kK , f) and possibly some random
influence, the distribution of the next service time Y is chosen, as well the subset K ⊆
{1, . . . ,K} of queues that will be served in the next service time (with kj > 0 for all j ∈ K),
and the next internal state f ′ ∈ F (if present). This choice is made depending on the
constraints of the system and on the service strategy. Then, the next system state is

Xn+1 = (k1 − IK(1) + Z1, . . . , kK − IK(K) + ZK , f
′),

where Zj is the number of jobs that arrive at the j-th queue during the service time Y .
Given the intensity λj of the arrival process at that queue, and the distribution of Y , the



distribution of Zj can be calculated as

P(Zj = i) =

∫ ∞
0

(λjt)
i

i!
e−λjtdFY (t).

In case of deterministic service time of length t0, the Zj are Poisson distributed with pa-
rameter λjt0.

The model can be extended to cover the case that jobs are served in parallel, but asyn-
chronously. In that case, the time between two events is not the complete service time of
one job, but only a part of it. In each state, the Markov chain has to store information about
which jobs are still in service at this time, and for how long. In fact, the time is divided
into short time slots of a positive length, to ensure that the state space remains countable.
To know for how long some job has still to be served, it is necessary to know when service
started, unless the distribution of service times is memoryless. Altogether, the model gets
very complicated in this case and realistic service times are hard to consider.

3.2 Markov Process

A Markov process (Lazowska et al. (1984)) is a continuous time stochastic process. In con-
trast to a Markov chain it describes the behaviour of the system at any time, not only at
discrete points in time. Arrivals and departures are now described by separate state transi-
tions, thus they are independent. Naturally, the times between state changes of a Markov
process are exponentially distributed. By the introduction of intermediate states, it is possi-
ble to cover Cox distributions, too. It is known that every distribution with positive support
can be approximated by Cox distributions. Thus, arbitrary service time distributions can be
considered in this model, although the number of phases (and thus the number of interme-
diate states) sometimes has to be large for a good approximation. Normally, jobs served in
parallel are represented by independent transitions, so they can be served asynchronously
anyway. If desired, Cox distributions can also be used for the interarrival times.

The state space can still be expressed as S = {(k1, . . . , kK , f) | kj ∈ N0, f ∈ F},
where the variables k1, . . . , kK represent the queue lengths, and F is a finite set of internal
states. The latter typically stores information about which types of jobs are currently served,
and for how long they are already in service. In a system where at mostR jobs can be served
at the same time, the state space might be described as

S = {(k1, . . . , kK , p1, t1, . . . , pR, tR) | kj ∈ N0}
in more detail, in which pi is the number of phases that have already passed for the i-th job,
and ti designates the type of that job. The value pi = 0 indicates that there is currently no
job being served by the i-th resource. Of course, there might as well be some more internal
information to be stored.

In such a system, there are generally three types of transitions in the Markov process.
The first type is related to the arrival process, and it looks like

(k1, . . . , kj , . . . , kK , p1, t1, . . .) −→
λj

(k1, . . . , kj + 1, . . . , kK , p1, t1, . . .).

The second type relates to jobs that are already in service, but not yet finished. For some i
with pi ≥ 1, let the service time of a job of type ti be given by a Cox(α1, . . . , αm−1;
µ1, . . . , µm) distribution.



Thus, the next phase of the service time has the intensity µpi+1. In case we already
have pi = m−1, the service time will definitely terminate after this phase, thus the transition
is

(. . . , p1, t1, . . . , pi, ti, . . . , pR, tR) −→
µpi+1

(. . . , p1, t1, . . . , 0, ti, . . . , pR, tR).

Otherwise, the service time will terminate after the next phase with probability 1 − αpi+1,
and it will continue after that with probability αpi+1. This induces the transitions

(. . . , p1, t1, . . . , pi, ti, . . . , pR, tR) −→
(1−αpi+1)µpi+1

(. . . , p1, t1, . . . , 0, ti, . . . , pR, tR),

(. . . , p1, t1, . . . , pi, ti, . . . , pR, tR) −→
αpi+1µpi+1

(. . . , p1, t1, . . . , pi + 1, ti, . . . , pR, tR).

The third type is related to the start of new services. When there is a free resource, and there
are jobs waiting in some queues whose type is compatible to the services currently running,
then one of these jobs can be started. Apart from the constraints of the system, the choice is
normally also based on some service strategy, which might include some random influence.
Assume that pi = 0 and kj ≥ 1, and the first job waiting in the j-th queue can be served
by a service of type t̃, whose service time is given by a Cox(α1, . . . , αm−1;µ1, . . . , µm)
distribution. If this service is compatible with the other services currently running, then
this job might be chosen with some probability γ > 0. With probability 1− α1, the service
terminates after the first phase, and with probability α1 it continues. Altogether, this induces
the transitions

(k1, . . . , kj , . . . , 0, ti, . . . , pR, tR) −→
γ(1−α1)µ1

(k1, . . . , kj − 1, . . . , 0, t̃, . . . , pR, tR),

(k1, . . . , kj , . . . , 0, ti, . . . , pR, tR) −→
γα1µ1

(k1, . . . , kj − 1, . . . , 1, t̃, . . . , pR, tR).

If we have γ < 1, which means that there are other choices that are taken with a positive
probability, then there have to be similar transitions for those, too.

Of course, this short description is only a rough sketch of how a complicated system is
modeled as a Markov process, and there are many more details. For example, it might be
necessary to store the type of a waiting job somehow, in case the first job in some queue still
has to wait because its type is not compatible with the running services. In some cases, the
job type of an idle resource might be used for that, especially if it is already determined that
the job will be served by that resource. In general, nothing has been said about the mapping
of the resources to the queues by now, because it is not possible to give a description that
covers arbitrary systems.

In the case of the junction shown in the Figures 2 and 1, where a double-track line
coming from some place A branches towards two different destinations B and C, there
are three queues and two resources. The first resource serves the jobs coming from A,
and those jobs can have two different types, depending on their destination. Jobs coming
from B and C are both served by the second resource, as they cannot be served in parallel.
Their type designates where the job came from. In case of a grade-separated junction, both
resources can always be working simultaneously, but in an at-grade junction there are some
exclusions, depending on the types of the jobs. If the job coming fromA has to wait because
it is not compatible with a running service, its type can already be stored in the first resource
which has to remain idle in this case.



3.3 Cox Distributions

As shown above, Cox distributions (Cox (1955); Bolch et al. (2006a)) can easily be con-
sidered in Markov processes, as they are composed of exponential distributions and some
random decisions. While it is known that every distribution with positive support can be
approximated by a Cox distribution when the number of phases goes to infinity, it is also
interesting to examine the capabilities of Cox distributions with a fixed number of phases.
As the state space of the Markov process grows with the number of phases, it is desirable to
keep the latter small, if possible.

Let Ỹ ∼ Cox(α1, . . . , αm−1;µ1, . . . , µm) be Cox distributed with m phases. It can
be shown as an extension of (Cox (1955)) that for the coefficient of variation (CV) the
inequality

CV(Ỹ ) =

√
Var(Ỹ )

E(Ỹ )
≥ 1√

m

holds, and that this border is reached if the Cox distribution is an Erlang distribution, which
means that α1 = . . . = αm−1 = 1 and µ1 = . . . = µm. On the other hand, this also implies
that for a given coefficient of variation CV(Y ) of an arbitrary random variable Y , we can
compute the required number of phases using the inequality

m ≥
⌈

1

CV(Y )2

⌉
.

If the random variable Y , which is to be approximated, is characterized only by its mean E(Y )
and variance Var(Y ), there are generally some degrees of freedom remaining when select-
ing a Cox distribution with an appropriate number of phases. Our approach is to use a
random variable

Ỹm,α ∼ Cox
(
α, . . . , α;

m

E(Y )
,
αm

E(Y )
, . . . ,

αm−1m

E(Y )

)
with m ≥ 2 phases and α ∈ (0, 1]. Its expected value is

E(Ỹm,α) =
m∑
i=1

αi−1
E(Y )

αi−1m
= E(Y )

as desired, and it can be shown that the variance is strictly decreasing in α with

Var(Ỹm,1) =
E(Y )2

m
and lim

α→0
Var(Ỹm,α) =∞.

Thus, there exists a unique α ∈ (0, 1] for which Var(Ỹm,α) = Var(Y ) holds. For m = 2, it
can be calculated as

α =
E(Y )2

2 Var(Y )
=

1

2 CV(Y )2
.

A closed form expression for an arbitrary number of phases is not known, in some cases it
might be required to compute α by numerical methods.



4 Simulation

The analytical approach discussed in the previous section is tested by comparing the re-
sults with a direct Monte-Carlo simulation of the junction. In the simulation, independently
Poi(λi)-distributed arrivals (with i ∈ {A,B,C}) of requests at the three queues are gen-
erated. Requests are served according to the same (heuristic) service discipline as in the
Markov model. Service times of requests are generally independently distributed and can
be matched to practical requirements. In the present work, exponentially distributed and
Gaussian service times are considered.

The structure of the simulation is illustrated in Figure 3. We subsequently briefly discuss
its constituents.

junction is
at-grade

generate schedule
according to
rules (◦)

generate in-
frastructure

generate list of
arrival times for

all trains

measure and
compare waiting

times and
queue lenghts

junction is
grade-

separated

generate schedule
according to
rules (◦◦)

Figure 3: process of the schedule generation - the rules (°) and (°°) are included in Ap-
pendix B

First, infrastructure parameters including length, admissible velocity, block structure
and position of the junction are defined. To facilitate comparison to the analytical model
the expected service time is normalized to 1 such that the arrival rate corresponds to the
utilization ratio of the queueing system in the grade-separated case. For the sake of simplic-
ity in the analytical model, no blocks subdividing the incoming tracks are considered. This
corresponds to the three starting points A, B and C being directly adjacent to the junction.

In a second step, the lists of arrival times of trains at the three stations are generated from
independently exponentially distributed inter-arrival times with parameters corresponding to
the arrival rate at the respective station.

Depending on the given infrastructure a conflict free schedule is generated. Trains depart
their station of origin at the moment the intersection is empty, i.e. no conflicting train run
is in service. At this point, the information on the infrastructure layout of the intersection
enters, defining which train routes are mutually exclusive, resulting in different conflict-
resolution routines for the grade-separated and at-grade case.

The queue length distribution as well as statistical parameters such as the expectation
value and variance of queue length are determined by summing the length of inter-event
time windows the system is in a given state. By dividing by the total simulation time the
share of time the system exhibits queue length i, and hence the queue length distribution is
obtained.



5 Results and Evaluation

The discussion of the results is subdivided in two sections. The first deals with the capa-
bilities and the statistical significance of the simulation approach. In the second part the
evaluation and comparison of the simulation and analytical results are presented.

Quality and computational complexity

In the following the performance of the simulation approach is discussed. All computations
were performed using MATLAB (Matlab2016b (2016)) on a PC with i5-6500 (3.20 GHz)
kernel and 8 GB of RAM. We start by investigating the accuracy of the simulated results. To
this end, the standard deviation of the entries of the queue length distributions is analyzed
for different numbers of runs and trains within one simulation run. In the associated rows
the standard deviation of the marginal distribution for StationsA,B and C can be extracted.
The corresponding results are presented in Tables 1, 2 and Appendix C.

Queue length
(# runs/# trains) m 0 1 2 3 4

A 0.06616 0.09373 0.01056 - -
(5/10) B 0.11256 0.09235 - - -

C 0.09045 0.05792 0.05824 - -
A 0.12143 0.08142 0.02015 0.03967 0.01905

(10/10) B 0.07266 0.06628 - - -
C 0.08224 0.08397 - - -
A 0.02614 0.01967 0.01023 0.00426 0.00176

(100/100) B 0.02286 0.01838 0.00757 0.00199 0.00014
C 0.02099 0.01782 0.00571 0.00097 0.00039
A 0.00800 0.00581 0.00314 0.00125 0.00047

(100/1,000) B 0.00660 0.00575 0.00207 0.00059 0.00016
C 0.00577 0.00499 0.00162 0.00046 0.00011
A 0.00276 0.00210 0.00111 0.00040 0.00013

(100/10,000) B 0.00236 0.00198 0.00072 0.00021 0.00005
C 0.00193 0.00172 0.00054 0.00014 0.00003
A 0.00068 0.00061 0.00029 0.00012 0.00004

(100/100,000) B 0.00064 0.00052 0.00018 0.00006 0.00001
C 0.00065 0.00055 0.00017 0.00004 0.00001

Table 1: Standard deviation of the marginal distributions for different (number of
runs/number of trains)-combinations of the at-grade junction

The first observation is that a large number of trains is necessary to encounter longer
queues in the stations. Due to the junction layout station A is more vulnerable to longer
queues. In general one needs many train runs to encounter rare cases when subsequent
delays push each other to a level where a lot of trains wait.

The next observation is that with small number of trains and runs the standard deviation
is not only higher, but more likely to produce random results. With bigger combinations
a decrease of the standard deviation and thus a convergence to the expected queue length
is achieved. As expected it is observed that at the grade separated junction the standard



Queue length
(# runs/# trains) m 0 1 2 3 4

A 0.03291 0.05231 0.02480 0.00228 -
(5/10) B 0.06472 0.06385 - - -

C 0.10427 0.05599 - - -
A 0.08117 0.07428 0.03766 0.00107 -

(10/10) B 0.07997 0.06542 0.01998 - -
C 0.09651 0.05382 0.01828 - -
A 0.02797 0.02031 0.01021 0.00462 0.00186

(100/100) B 0.01976 0.01682 0.00485 0.00124 0.00031
C 0.02116 0.01774 0.00512 0.00109 0.00071
A 0.00773 0.00639 0.00293 0.00110 0.00036

(100/1,000) B 0.00659 0.00562 0.00164 0.00040 0.00008
C 0.00611 0.00518 0.00160 0.00045 0.00014
A 0.00264 0.00204 0.00094 0.00035 0.00013

(100/10,000) B 0.00162 0.00144 0.00053 0.00015 0.00003
C 0.00195 0.00170 0.00056 0.00014 0.00003
A 0.00082 0.00063 0.00027 0.00011 0.00003

(100/100,000) B 0.00058 0.00053 0.00015 0.00003 0.00001
C 0.00051 0.00046 0.00016 0.00004 0.00001

Table 2: Standard deviation of the marginal distributions for different (number of
runs/number of trains)-combinations of the grade separated junction

deviation of stations B and C is approximately equal whereas at the at-grade junction the
preference of B over C can be seen.

Figures 1 and 2 suggest that the selection of the number of trains and runs greatly influ-
ences the desired accuracy of the simulation. With an increasing number of trains and runs
the accuracy of the simulation is increasing as well. In particular the standard deviation of
the marginal distribution decreases which serves as measurement of convergence. The de-
cision yet not only influences the quality of the approximation, but the computational time,
too. The corresponding simulation time in seconds are depicted from Table 3.

# trains 10 50 100 500 1,000 5,000 10,000 100,000
# runs

5 0.357 0.460 0.614 2.051 3.980 17.103 33.723 336.349
10 0.552 0.838 1.518 4.278 7.981 36.054 68.728 663.808
50 2.869 5.338 6.149 22.050 38.625 183.822 343.191 3436.729

100 5.866 9.667 12.772 42.858 77.982 358.799 699.200 6675.990

Table 3: Running time of the simulation in seconds for various combinations of the number
of trains and runs

The computation within the analytical model takes 0.066513 seconds which is distinctly
smaller than the simulation results. The computational complexity of the simulation is
approximately O(t · r) with number of trains t and number of runs r which can be verified
by the results in Table 3. Nevertheless the model may not only achieve more precise results,
but fast computation time for manageable problem sizes, too.



Comparison of analytical and simulation results

For the simulation data depicted in the following figures 100 runs with 100,000 trains each
have been completed. We decided to use the quite high number of runs and trains due
to no time limitations and a good quality of the results as analyzed in the previous part.
Arrival rates are set to 0.2 for station A and 0.1 for B and C, each. In the following figures
”Queue A/B/C” refer to the results of the analytical model and are plotted as a cross whereas
the simulation results are referred as ”Queue A/B/C (sim)” and marked as circles.

There are several key properties to be analyzed: The first one is the distribution of the
number of trains in the system (queue length) with respect to their origins. The number
of trains in the system is defined as the sum of trains waiting in A, B and C, respectively,
including all trains currently receiving service.

Trains in system
0 1 2 3 4 5 6 7

P
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*=
 N

)
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100

Queue A
Queue B
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2
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2
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Figure 4: Marginal distributions of the number of trains in the system with origins X∗ ∈
{A,B} for a grade-separated junction. Service times are Markovian (variation coefficient
1). The exact results given by the geometric sequence with ρ1 = 0.2 and ρ2 = 0.1 in this
case are depicted for comparison.

In Figure 4 the probability of a specific number of trains in the system is visualized
in a semilogarithmic scale. The number of trains for origin C is not depicted for better
readability and because the results forB and C are identical in the grade-separated case due
to the symmetry of the infrastructure and service rules (cf. Appendix B).

The results correspond well with the geometric sequences (1 − ρi) · ρi (ρ1 = 0.2,
ρ2 = 0.1), which is the exact result for the number of customers in queueing systems of
type M/M/1.

For the at-grade variant, which is presented in Figure 5, the number of trains waiting in
B and C cannot be expected to be equal anymore due to the additional conflicts between
directions A→ C and B → A. These conflicts

• break the symmetry between the queues in B and C and

• introduce correlations between trains of opposite directions. The queueing process for
requests originating in A is no longer decoupled from service of requests originating
in B or C and vice versa.
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Figure 5: The probability of the number of trains in the system for origins X∗ ∈ {A,B,C}
for an at-grade junction versus the geometric sequence with ρ1 = 0.2 and ρ2 = 0.1

Indeed, as can be seen in Figure 5, Queue C is now significantly shorter than Queue B
and Queue lengths in A, B and C deviate from the geometric distribution obtained in the
grade-separated case.

This is to be expected by the infrastructure layout and the service strategy discussed in
detail in Appendix B. As Queue C does not suffer any conflicts with trains originating in
A and Queue B is not given preferential treatment w.r.t. Queue C, it can be expected to be
shorter than Queue B. Correlations between the two directions also ensure the system no
longer corresponds to independently operating queueing systems of type M/M/1/∞, such
that deviations from the geometric sequence are to be expected. However, it can be noted
the results obtained with the Markovian approach discussed in Section 3 correspond well
with simulation results.

In Figures 6 and 7 the expectation value of queue lengths is depicted for different vari-
ation of train service times. The latter are taken to be normally distributed with variation
coefficients varying between 0.75 and 1.25.

It can be noted that the expected queue lengths grow as the variance does. Note that the
expectation value of service times is identical for all data points (set to 1), but the variance
of service times is altered such that different variations are obtained.

When comparing analytical results and simulation for the grade-separated case in Fig-
ure 6 a good match between the corresponding data is found. As before, the data for the
queues in stations B and C is equal for symmetry reasons.

For the at-grade case depicted in Figure 7 several interesting observations can be made.
First, as already observed in Figure 5, a bias between B and C is observed. Moreover,
our Markovian approach seems to underestimate the expected queue lengths for all three
origins.

Whereas the first observation can be explained by infrastructure layout and service strat-
egy rules, the situation is less clear for the second observation. The difference between the
Markovian approach and simulation could possibly be due to the fact that Markovian pro-
cesses only allow for a single transition at a given time. In the simulation, by contrasts, two
events can happen at the same time: For instance, two trains may start in different stations
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Figure 6: The expected length of the queues for origins X∗ ∈ {A,B,C} in a grade-
separated junction for variation coefficients for the service times 0.75, 0.875, 1, 1.125 and
1.25
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Figure 7: The expected length of the queues for origins X∗ ∈ {A,B,C} in an at-grade
junction for variation coefficients for the service times 0.75, 0.875, 1, 1.125 and 1.25

at the same time or arrivals and starting or ending of service can appear simultaneously.
This introduces a higher degree of irregularity in the system as compared to Markovian pro-
cesses. The deviation could possibly be healed by considering Batch-Markov-Processes in
the analytical model instead.



6 Conclusions

In this paper railway junctions as an example of critical infrastructure elements often be-
coming bottlenecks in operations have been analyzed. In order to analyze their impact on
line capacity the number of trains needs to be modeled in a detailed, yet computationally
accessible way.

To meet these requirements we have introduced a Markovian model that allows comput-
ing queue lengths on the line segments adjacent to railway junctions, thus indicating how
congested the corresponding track segments are. The model allows to treat different infras-
tructure layouts and can serve to assess the cost for revenue ratio in terms of line capacity
for different variants in construction projects.

By comparing model results to simulation it has been shown the model meets expec-
tations for a standard case. It is now to be extended to a map more complex situations
including different train types and velocities as well as more complex network segments.
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Appendix A

This is a list of all transitions for a system representing a double-tracked level junction as
shown in figure 1. Trains coming fromA (queue k1) proceed either toB (job type t1 = 1) or
to C (t1 = 2). Trains in the other direction are serviced by the second resource, where t2 =
1 represents a train from B (queue k2) and t2 = 2 one from C (k3). A train from A to C
cannot be served in parallel with one from B to A. When the first resource is idle, then its
job type represents the type of the next train that will be served. The job type of the second
resource is not relevant when it is idle. The service time for all job types is given by Ỹm,α as
defined before, and µ = m

E(Ỹm,α)
represents the service intensity of the first phase. Unless

more restrictive conditions are stated, we have k1, k2, k3 ∈ N0, p1, p2 ∈ {0, . . . ,m − 1},
t1, t2 ∈ {1, 2}. The following transitions exist:

(k1, k2, k3, p1, t1, p2, t2) −→
λ1

(k1 + 1, k2, k3, p1, t1, p2, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
λ2

(k1, k2 + 1, k3, p1, t1, p2, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
λ3

(k1, k2, k3 + 1, p1, t1, p2, t2)

For p1 ≤ m− 2:

(k1, k2, k3,m− 1, t1, p2, t2) −→
βαm−1µ

(k1, k2, k3, 0, 1, p2, t2)

(k1, k2, k3,m− 1, t1, p2, t2) −→
(1−β)αm−1µ

(k1, k2, k3, 0, 2, p2, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
β(1−α)αp1µ

(k1, k2, k3, 0, 1, p2, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
(1−β)(1−α)αp1µ

(k1, k2, k3, 0, 2, p2, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
αp1+1µ

(k1, k2, k3, p1 + 1, t1, p2, t2)

For p2 ≤ m− 2:

(k1, k2, k3, p1, t1,m− 1, t2) −→
αm−1µ

(k1, k2, k3, p1, t1, 0, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
(1−α)αp2µ

(k1, k2, k3, p1, t1, 0, t2)

(k1, k2, k3, p1, t1, p2, t2) −→
αp2+1µ

(k1, k2, k3, p1, t1, p2 + 1, t2)



For k1 ≥ 1:

(k1, k2, k3, 0, 1, p2, t2) −→
β(1−α)µ

(k1 − 1, k2, k3, 0, 1, p2, t2)

(k1, k2, k3, 0, 1, p2, t2) −→
(1−β)(1−α)µ

(k1 − 1, k2, k3, 0, 2, p2, t2)

(k1, k2, k3, 0, 1, p2, t2) −→
αµ

(k1 − 1, k2, k3, 1, 1, p2, t2)

(k1, k2, k3, 0, 2, 0, 1) −→
β(1−α)µ

(k1 − 1, k2, k3, 0, 1, 0, 1)

(k1, k2, k3, 0, 2, 0, 1) −→
(1−β)(1−α)µ

(k1 − 1, k2, k3, 0, 2, 0, 1)

(k1, k2, k3, 0, 2, 0, 1) −→
αµ

(k1 − 1, k2, k3, 1, 2, 0, 1)

(k1, k2, k3, 0, 2, p2, 2) −→
β(1−α)µ

(k1 − 1, k2, k3, 0, 1, p2, 2)

(k1, k2, k3, 0, 2, p2, 2) −→
(1−β)(1−α)µ

(k1 − 1, k2, k3, 0, 2, p2, 2)

(k1, k2, k3, 0, 2, p2, 2) −→
αµ

(k1 − 1, k2, k3, 1, 2, p2, 2)

For k2 ≥ 1:

(k1, k2, k3, p1, 1, 0, t2) −→
(1−α)µ

(k1, k2 − 1, k3, p1, 1, 0, 1)

(k1, k2, k3, p1, 1, 0, t2) −→
αµ

(k1, k2 − 1, k3, p1, 1, 1, 1)

For k2 ≥ 1, k2 ≥ k1:

(0, k2, k3, 0, t1, 0, t2) −→
(1−α)µ

(0, k2 − 1, k3, 0, t1, 0, 1)

(0, k2, k3, 0, t1, 0, t2) −→
αµ

(0, k2 − 1, k3, 0, t1, 1, 1)

For k3 ≥ 1:

(k1, k2, k3, p1, 2, 0, t2) −→
(1−α)µ

(k1, k2, k3 − 1, p1, 2, 0, 2)

(k1, k2, k3, p1, 2, 0, t2) −→
αµ

(k1, k2, k3 − 1, p1, 2, 1, 2)

(k1, 0, k3, p1, 1, 0, t2) −→
(1−α)µ

(k1, 0, k3 − 1, p1, 1, 0, 2)

(k1, 0, k3, p1, 1, 0, t2) −→
αµ

(k1, 0, k3 − 1, p1, 1, 1, 2)

For k3 > k2 (implies k3 ≥ 1):

(0, k2, k3, 0, t1, 0, t2) −→
(1−α)µ

(0, k2, k3 − 1, 0, t1, 0, 2)

(0, k2, k3, 0, t1, 0, t2) −→
αµ

(0, k2, k3 − 1, 0, t1, 1, 2)



Appendix B

We subsequently give a detailed overview of the service discipline applied in the simulation.

Notation

• si: Possible start of service for the next request in queue i (i ∈ {A,B,C}).

• routeA: Route of the next request entering the system in station A. tA ∈ {1, 2}
where 1 corresponds to the route with destination B, 2 to the one with destination C.

• li: length of queue i at the instant of consideration (i ∈ {A,B,C}).

At-grade junction (°)

In the at-grade infrastructure variant trains are served according to the following rules.
if sA < min(sB , sC) then

Request from A enters service
else if sB < min(sA, sC) then

Request from B enters service
else if sc < min(sA, sB) then

Request from C enters service
else if sA = sC & sA < sB then

Requests from A and C enter service simultaneously
else if sA = sB & sA < sC & routeA = 1 then

Requests from A and B enter service simultaneously
else if sA = sB & sA < sC & routeA = 2 then

Request from A enters service. Request from B waits.
else if sB = sC & sB < sA & lB > lC then

Request from B enters service
else if sB = sC & sB < sA & lC > lB then

Request from B enters service
else if sB = sC & sB < sA & lB = lC then

Origin of next request (B or C) is decided at random
else if sA = sB = sC & routeA = 1 then

Requests from A and B enter service simultaneously
else if sA = sB = sC & routeA = 2 then

Requests from A and C enter service simultaneously
end if



Grade-separated junctions (°°)

In the grade separated infrastructure variant trains are served according to the following
rules.

if sA < min(sB , sC) then
Request from A enters service

else if sB < min(sA, sC) then
Request from B enters service

else if sc < min(sA, sB) then
Request from C enters service

else if sA = sC & sA < sB then
Requests from A and C enter service simultaneously

else if sA = sB & sA < sC then
Requests from A and B enter service simultaneously

else if sB = sC & lB > lC then
Request from B enters service

else if sB = sC & lC > lB then
Request from B enters service

else if sB = sC & lB = lC then
Origin of next request (B or C) is decided at random

end if



Appendix C

Queue length
(# runs/# trains) m 0 1 2 3 4 5 6 7

A 0.066161043 0.093730679 0.010564648 - - - - -
(5/10) B 0.112567188 0.092352950 - - - - - -

C 0.090452121 0.057928640 0.058241754 - - - - -
A 0.121439450 0.081423161 0.020157948 0.039677679 0.019051999 - - -

(10/10) B 0.072663649 0.066280829 - - - - - -
C 0.082241038 0.083979052 - - - - - -
A 0.026146454 0.019679689 0.010232689 0.004267402 0.001762892 0.000404786 0.000218387 -

(100/100) B 0.022866976 0.018383766 0.007577367 0.001999697 0.000146478 - - -
C 0.020993243 0.017824339 0.005719016 0.000978752 0.000399978 - - -
A 0.008002613 0.005810845 0.003140910 0.001251374 0.000470614 0.000199253 0.000009297 -

(100/1,000) B 0.006601015 0.005752820 0.002071574 0.000593651 0.000169229 - - -
C 0.005776997 0.004994537 0.001624271 0.000463340 0.000119813 0.000034688 - -
A 0.002767401 0.002104010 0.001114075 0.000408485 0.000133992 0.000050178 0.000017436 0.000004507

(100/10,000) B 0.002361174 0.001986837 0.000729372 0.000210824 0.000057625 0.000014757 0.000007988 0.000001332
C 0.001938445 0.001727339 0.000545314 0.000147825 0.000030978 0.000006611 - -
A 0.000689209 0.000617563 0.000298223 0.000123782 0.000048390 0.000017220 0.000006055 0.000002026

(100/100,000) B 0.000648830 0.000529093 0.000185779 0.000060968 0.000016418 0.000005137 0.000001240 0.000000062
C 0.000655394 0.000559908 0.000178669 0.000041433 0.000010679 0.000002051 0.000000464 -

Figure 8: Standard deviation of marginal distribution for different (number of runs/number of trains)-combinations of the at-grade junction



Queue length
(# runs/# trains) m 0 1 2 3 4 5 6 7

A 0.032913894 0.052318268 0.024807431 0.002282239 - - - -
(5/10) B 0.064726757 0.063852943 - - - - - -

C 0.104279705 0.055992178 - - - - - -
A 0.081176448 0.074285875 0.037663662 0.001076343 - - - -

(10/10) B 0.079977604 0.065426065 0.019985054 - - - - -
C 0.096517277 0.053822014 0.018289871 - - - - -
A 0.027977381 0.020315260 0.010213914 0.004623327 0.001868092 0.001765828 0.000388498 -

(100/100) B 0.019766520 0.016825589 0.004857131 0.001240463 0.000312719 - - -
C 0.021165964 0.017743796 0.005120951 0.001093533 0.000719960 0.000148676 - -
A 0.007737485 0.006396292 0.002930319 0.001109086 0.000362368 0.000110412 0.000011784 0.000008879

(100/1,000) B 0.006595361 0.005627620 0.001640630 0.000409024 0.000087157 0.000076515 0.000034175 -
C 0.006113524 0.005181027 0.001602268 0.000454732 0.000148379 0.000046532 - -
A 0.002643559 0.002049136 0.000949406 0.000359729 0.000135155 0.000042220 0.000015224 0.000002345

(100/10,000) B 0.001625148 0.001449281 0.000536924 0.000159006 0.000034377 0.000006772 0.000000478 -
C 0.001955141 0.001702051 0.000566031 0.000140617 0.000033864 0.000011174 0.000001082 -
A 0.000824025 0.000632156 0.000276804 0.000110013 0.000037446 0.000131336 0.000004595 0.000002147

(100/100,000) B 0.000586230 0.000538553 0.000154919 0.000034951 0.000010188 0.000002395 0.000000511 0.000000002
C 0.000511838 0.000460812 0.000162198 0.000044987 0.000010006 0.000002302 0.000000725 0.000000280

Figure 9: Standard deviation of marginal distribution for different (number of runs/number of trains)-combinations of the grade separated
junction


