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ABSTRACT 
Buffer times are essential for preventing delay propagation and ensuring robustness in railway 
timetabling. While robustness analysis deals with ensuring the effectiveness of allocated buffer times 
in schedules, the number of trains is generally assumed to be fixed. The feasibility of the train operation 
concept needs to be checked by strategic long-term capacity planning beforehand. Capacity analysis 
methods depend on buffer times and involve some sort of delay prognosis. The goal of the present paper 
is to analyse the effects of buffer time distributions on nominal capacity obtained with stochastic 
(analytic) capacity analysis approaches. Complementing previous work where Monte-Carlo simulation 
had been applied, it is shown how convolution integrals arising in analytic delay propagation models 
can be explicitly calculated using moment generating functions. Based on this approach, a 
generalisation of the STRELE framework, which is the standard methodology of German infrastructure 
manager DB Netz AG for capacity analysis of railway lines, is derived and the effects of different buffer 
time distributions on nominal capacity are studied.  
Keywords:  railway operations, buffer time, knock-on delay, analytical calculation, nominal capacity. 

1  INTRODUCTION 
Buffer times play an essential role in railway timetabling. By including spare times on top of 
technically minimal feasible headway times, the formation of knock-on delays can be 
impeded and the robustness of the timetable against disturbances is increased [2]–[5].  
     While buffer times ensure the quality of service in railway operations they bear on the 
usable capacity in line and frequency planning. In this sense, planning and operations pose 
contradictory requirements on buffer time allocation. As a result, a better understanding of 
scheduled buffer times, their effectiveness and their effects on rail capacity is of vital interest 
in long-term strategic planning.  
     Whereas tactical planning of capacity is mostly based on timetable-based methods such 
as UIC code 406 [6], long-term strategic planning has to cope with the difficulty that the 
timetable is subject to major changes or may not be known at all. This is why stochastic delay 
prognosis modelling is prevailing in this area. Many models rely on queueing methods [7]–
[10], where buffer times are modelled implicitly in the arrival process. Another class of 
models is based on convolutions of probability density functions to calculate (knock-on) 
delays: in [2] a family of 𝜃-exponential polynomials are used to represent delay distributions. 
Meester and Muns [11] use a similar concept based on phase-type distributions has been 
discussed. A general approach relying on numerical evaluation of the integrals is discussed 
by [12]. 
     In the present paper the focus is on a specific approach, the STRELE framework, which 
is the standard approach of German infrastructure manager DB Netz AG for the capacity 
analysis of railway lines [13]. The foundations of the approach, which is a part of a family of 
infrastructure-centred stochastic capacity analysis tools used by DB Netz AG [13] have 
originally developed by Schwanhäußer [3]. It provides a purely analytic method to calculate 
the mean knock-on delays based on (train-specific) probability distributions of primary 
delays and buffer times between trains. The approach has recently been revisited and 
formalised in [15]. 
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     An important aspect of Schwanhäußer's original derivation of the pivotal STRELE 
formula, an analytic approximation of the average height of knock-on delays, is the 
assumption that buffer times are either fix or exponentially distributed random variables [3]. 
This assumption seems questionable nowadays, given the fact that timetables tend to get more 
and more periodic [16]. We show how the formal description given in [15] can be used to 
remedy this shortcoming by allowing to derive train-specific approximations for the height 
of knock-on delays for any buffer time distribution which allows for a closed form 
representation of the moment generating function. This class of distribution functions include 
normal distributions, phase-type distribution functions as well as all distribution functions, 
which allow for a matrix exponential representation of the pdf. As a result, a wide range of 
buffer time distributions and their effects on knock-on delays, and hence line capacity, can 
be modelled.  
     The current presentation builds on previous work, where the authors have analysed buffer 
time distributions in delay propagation modelling using Monte Carlo simulations [1]. The 
present paper complements [1] by showing how a generalization of buffer times can be 
achieved in analytic stochastic modelling approaches. We subsequently present an 
enhancement of the STRELE-formula [3] which allows for flexible buffer time distributions. 
We analyse how this affects line capacity using knock-on delays as a quality metric. For the 
admissible delay the level of service used by German infrastructure manager DB Netz AG is 
applied [13]. While the STRELE procedure is a capacity analysis technique currently 
predominantly used in Germany, it is transferable to any other infrastructure manager. What 
is more, similar model logics have been applied in stochastic delay propagation models such 
as [2], [12]. The techniques based on moment-generating functions described in this paper 
are transferable and facilitate calculus of delay propagation integrals, in general. 
     The paper is structured in the following way: we start by giving a short overview on the 
STRELE-framework in the following section. In particular, we demonstrate how the 
laborious calculation of the convolution integrals in delay propagation modelling can be 
greatly facilitated by resorting to moment generating functions, for which closed-form 
representations can often be given. In Section 3, we discuss the performance of our new 
approach. Therefore, we confer the results of old and new framework under comparable 
constraints. Furthermore, we investigate the impact of different buffer time distributions on 
the nominal capacity of railway lines and get an indication of the number of cases in which 
the STRELE-formula over- or underestimates the capacity. 

2  METHOD 
We present the methodology used in this paper in the follow-up. At first, we introduce the 
STRELE-formula, which has been used for decades to calculate the expected knock-on 
delays on railway lines. Afterwards, we enhance the existing framework towards modern 
constraints and requirements. We conclude with a short technical chapter necessary to handle 
a wide class of buffer time distributions in the model. 

2.1  STRELE-framework 

The STRELE-framework provides an analytic approximate analysis of the expected knock-
on delays on railway lines. It relies on a queueing-theoretic representation of railway lines, 
where railway line sections are represented by two unidirectional servers (for double-track 
railway lines), adjacent stations correspond to waiting areas and service times are defined by 
minimum headway times between subsequent trains [7]. Based on train-specific probability 
density functions of primary delays conflict, probability and height of transferred knock-on 
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delays are calculated as a function of buffer times between pairs of trains [3]. Here, primary 
delays are represented by a distribution which consists of a mixture of binomial (delay 
yes/no) and Exponential distributions (height of delays), which was largely confirmed by 
comparison to train records [17].  
     Currently, the highly technical delay propagation modelling in the STRELE framework 
is condensed in the STRELE formula. Based on the assumption of independently identically 
exponentially distributed buffer times (alternatively, deterministic buffer times have also 
been discussed [3]), the mean knock-on delay (per train) is given explicitly by this formula: 

K ൌ ቀcത െ
ୡതమ

ଶ
ቁ ⋅

୲̅మ

ୠഥା୲̅൭ଵିୣ
ష

ഥ
౪ത ൱

⋅

⎣
⎢
⎢
⎢
⎢
⎢
⎡ p ቆ1 െ eି 

ഥ౧
౪ത ቇ

ଶ

൫1 െ p൯ ⋅
୦

୲̅
⋅ ൬1 െ eି 

మഥౚ
౪ത ൰


ഥ

ത
⋅ ൬1 െ eି 

ഥ

౪ത ൰
ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎤

,                  (1) 

where: 
𝑐̅  average probability of primary delays  
t ̅  average time of delay of the delayed trains 
𝑏ത   average buffer time 
p   probability of trains with equal rank 

ℎ  average minimum headway time  
ℎ  average minimum headway time between trains with equal rank 

ℎୢ୧  average minimum headway time between trains with different rank 

     The STRELE formula has been implemented in various software tools [18], [19] and is 
broadly used to compute the expected knock-on delay K. Applying a level of service as an 
allowed sum of knock-on delays, the capacity of the investigated railway line can be derived. 
The closed form approximation, however, is obtained by averaging primary delays of trains; 
hence, only averages are needed as input [3]. This, as well as the i.i.d. assumption of buffer 
times between trains, gives rise to implausible conclusions: two schedules, for instance, 
which have the same average buffer time, but largely different distribution of buffer times 
will result in the same expected knock-on delay. 

2.2  Enhanced analytical calculation of the expected knock-on delays 

Schwanhäußer’s model, his assumptions and the derivation of the STRELE formula have 
recently been discussed and formalized by Weik et al. [15]. We subsequently present two 
major extensions of the STRELE framework, which allow to consider and efficiently 
calculate approximations for a wide class of buffer time distributions and, at the same time, 
allow as to keep the train-specific information and to avoid resorting to train averages.  
     As pointed out by Weik et al. [15] the expected waiting times 𝐾 (knock-on delays) can be 
split into delays of first and higher order. While the higher order delays can be treated based 
on a M/GI/1/∞-queueing representation with FCFS service policy (neglecting train 
priorities in heavy traffic), first-order delays are treated explicitly (potentially including 
delays) on a distributional basis. A functional relation between total knock-on delays, first-
order and higher order delays is built on the upscaling factor 𝜉:  
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     To calculate 𝐾
ሺଵሻ the probability of trains with equal rank 𝑝 is set to one. For the 

technical details of the calculation of 𝜉 and the parameters in equation (3) the reader is 
referred to [15]. 
     The computation of the expected knock-on delays (first or higher order) are dependent on 
three components: 

 The sum corresponds to conflicts of the observed train with the, theoretically 
infinitely many, following trains. In general, the summands are getting smaller than 
machine precision after a few trains. 

 The factor in front of the integral is only dependent on train characteristics like 
minimum headway times and delay characteristics. 

 The integral itself is only dependent on the buffer time distribution in the schedule 
and will be examined more closely in the following subsection. 

     This intermediate formula 𝐾ሺଵሻ in [15] contains the entire train-specific information 
including sequence-dependent headway times, train-specific parameters of primary delays. 
Thus, building on this formula, we only have to discover the means to efficiently evaluate 
eqn (3) for more general buffer time distribution present in the schedule.   

2.3  Moment-generating functions 

Having a closer look on (3), it can be seen that the buffer time distributions only enter in the 
integral on the right-hand-side. In case it exists, this integral can be represented by the 
moment-generating function (mgf), 

𝑀భ
ሺെ𝜆ሻ ൌ  𝑒ିఒభ𝑑𝐹ሺ𝑏ଵሻ

ஶ
ିஶ ,                                       (4) 

of the probability distribution of the buffer times, where 𝐹 is the corresponding cdf. The mgf 
𝑀 is an alternative definition of a random variable’s 𝑋 probability distribution.  
     It turns out that for a large class of probability distributions, including Erlang distributions, 
Gamma distributions, Degenerated distributions or Chi-Squared distributions a closed form 
expression of the mgf can be given [20]. The laborious task of numerically integrating the 
buffer time integral for each pair of trains is hence reduced to simple function evaluations. 
Particularly remarkable is the fact that the Degenerate (Dirac) distribution can be represented 
in this way, which means the approach can also be adopted to represent exact (scheduled) 
buffer times. 

3  RESULTS 
To present the impact of different buffer time distributions and input parameters, we examine 
the influence of the aforementioned on the nominal capacity for 1008 scenarios. At first, we 
verify the new model on a scenario where both, the STRELE-formula and the enhanced 
framework, are comparable. Following, we present the reader the procedure of the calculation 
of the nominal capacity for one scenario. In the parameter study, the results of the set of 
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scenarios are evaluated and finally we conclude with a short note on the computational 
complexity of the enhanced framework. 

3.1  Consistency of the enhanced framework 

The enhanced STRELE-framework is an extension of the classical STRELE-formula. 
Therefore, new and previous formula should be consistent, in the sense that they produce the 
same knock-on delays for comparable input. Indeed, as it can be seen in Fig. 1, the two results 
are equivalent as long as the input parameters are variance-free and exponentially distributed 
buffer times are assumed. If the input parameters deviate, the resulting knock-on delays differ 
due to the restriction of averaged parameters in the old STRELE-formula. The effects of 
varying parameters are discussed in more detail in Section 3.3. 

3.2  Influence of buffer time distributions 

Given a specific scenario, i.e. minimum headway times, delay characteristics, buffer times, 
et cetera for all trains, one is interested in calculating the quality of the schedule. In Germany, 
directive 405 of DB Netz AG [13] defines the level of service based on the acceptable height 
of knock-on delays. This Level of Service (LOS) depends on the type of train services and is 
calculated based on the following formula 

𝐿𝑂𝑆 ൌ 0.257 ⋅ 𝑒𝑥𝑝൫െ1.3 ⋅ 𝑝௧൯ ⋅ 𝑡௦ௗ,                                      (5) 

where 𝑝௧ is the share of passenger trains and 𝑡௦ௗ the length of the investigation period.  
     Knowing the acceptable height of knock-on delays, it is possible to determine the average 
minimum required buffer time for each scenario. Exemplary, in Fig. 2 the calculated knock-
on delays for different buffer time distributions and the STRELE-formula in dependence of 
the average buffer time are depicted. Graphically intersection the LOS and the approximation 
formula for the height of knock on delays the optimal height of buffer times (per train), on  
 

 

Figure 1:    Consistency of the enhanced STRELE framework for non-train specific primary 
delays and exponentially distributed buffer times. 
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Figure 2:    Calculation of the required average minimum buffer time for the scenario given 
the necessary service quality and depending the buffer time distribution. 

average, can be obtained. This point refers to the minimum buffer time that ensures 
satisfactory quality of service in operations. As it can be seen, the minimum buffer time 
required differs depending on the observed buffer time distribution and the scenario. 
     Knowing the average minimum headway time ℎത from the scenario input and reading off 
the minimum buffer time 𝑏, the nominal capacity 𝑁௧ can be calculated for every time 
frame 𝑡௦ௗ by 

𝑁௧ ൌ
௧ೞ

 ഥା
.                                                  (6) 

3.3  Parameter study 

In the following, a set of 1008 scenarios is investigated. The analysis consists of four different 
matrices of minimum headway times, six different vectors of delay probability and delay 
height each and seven different train mixtures. A detailed description of the scenario setup 
can be found in Tables 1–4. Each scenario contains two long-distance trains (LDT1, LDT2), 
two local trains (LT1, LT2) and two freight trains (FT1, FT2). 
For each scenario the nominal capacity is calculated, as presented in the previous chapter, for 
Exponential, Gamma (3) and Degenerated distribution and compared to the state-of-the-art 
nominal capacity given by the STRELE-formula. 
     The subsequent figures display the relative difference of nominal capacities 𝑅𝐷 between 
one of the chosen distributions 𝑁ௗ௦௧ and the STRELE-formula 𝑁ௌ்ோ as well as the absolute 
difference of nominal capacities 𝐴𝐷, which are calculated as follows: 

𝑅𝐷 ൌ
ேೞିேೄೃ

ேೄೃ
; 𝐴𝐷 ൌ 𝑁ௗ௦௧ െ 𝑁ௌ்ோ.                                      (7) 

     The figures show a histogram in which the number of cases for a specific relative 
difference of the nominal capacity (red), respectively the absolute difference of the nominal 
capacity (blue) is displayed on the y-axis. 
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Table 1:  Minimum headway times (min). 

Scenario 1 LDT1 LDT2 LT1 LT2 FT1 FT2 

LDT1 4 4 4 4 4 4 
LDT2 4 4 4 4 4 4 
LT1 4 4 4 4 4 4 
LT2 4 4 4 4 4 4 
FT1 4 4 4 4 4 4 
FT2 4 4 4 4 4 4 

Scenario 2 LDT1 LDT2 LT1 LT2 FT1 FT2 

LDT1 3.77 6.96 4.14 3.17 5.83 5.83 
LDT2 2.10 4.96 5.92 2.75 5.93 5.93 
LT1 3.93 3.33 3.26 2.68 2.02 2.02 
LT2 7.60 8.91 9.17 4.84 8.40 8.40 
FT1 5.07 6.89 7.48 3.89 3.78 3.78 
FT2 5.07 6.89 7.48 3.89 3.78 3.78 

Scenario 3 LDT1 LDT2 LT1 LT2 FT1 FT2 

LDT1 3.13 2.73 4.17 4.32 5.88 5.88 
LDT2 6.21 3.13 4.18 4.32 5.88 5.88 
LT1 5.32 4.20 3.40 4.27 1.99 1.51 
LT2 6.96 6.96 6.98 4.27 8.33 8.33 
FT1 5.98 5.98 7.66 3.73 3.73 4.04 
FT2 5.91 5.91 8.12 3.73 3.42 3.73 

Scenario 4 LDT1 LDT2 LT1 LT2 FT1 FT2 

LDT1 3 4.4 6 8 10 13 
LDT2 3 4 5.5 7.3 10 13 
LT1 3 4 5 6.2 8 12 
LT2 3 4 5 6.2 8 11 
FT1 3 4 5 5.8 7.6 11 
FT2 3 4 5 5.8 7.6 9.3 

 

Table 2:  Probability of being delayed. 

 LDT1 LDT2 LT1 LT2 FT1 FT2 

Scenario 1 0.5 0.5 0.5 0.5 0.4 0.4 
Scenario 2 0.5 0.5 0.5 0.5 0.5 0.5 
Scenario 3 0.1 0.2 0.4 0.6 0.8 0.9 
Scenario 4 0.3 0.3 0.5 0.5 0.7 0.7 
Scenario 5 0.2 0.2 0.2 0.2 0.2 0.2 
Scenario 6 0.8 0.8 0.8 0.8 0.8 0.8 
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Table 3:  Average height of delay for the delayed trains (min). 

 LDT1 LDT2 LT1 LT2 FT1 FT2 

Scenario 1 5 5 2 2 20 20 

Scenario 2 5 5 5 5 5 5 

Scenario 3 1 2 4 6 8 9 

Scenario 4 2 2 2 2 2 2 

Scenario 5 7 7 7 7 7 7 

Scenario 6 5 5 8 8 12 15 
 

Table 4:  Train mixture. 

 LDT1 LDT2 LT1 LT2 FT1 FT2 

Scenario 1 1/6 1/6 1/6 1/6 1/6 1/6 

Scenario 2 0.5 0.5 0 0 0 0 

Scenario 3 0.15 0.15 0.35 0.35 0 0 

Scenario 4 0 0 0.3 0.3 0.2 0.2 

Scenario 5 0 0 0 0 0.6 0.4 

Scenario 6 0 0 0 1 0 0 

Scenario 7 0.1 0.15 0.3 0.25 0.1 0.1 
 
     According to Directive 405 of DB Netz [13] a five-hour time-frame has been taking for 
the examination of the influence of the selected buffer time distributions compared to the 
current calculation method. 
     One of the main assumptions in the derivation of the STRELE-formula are exponentially 
distributed buffer times. As it can be seen from Fig. 3, the difference between the STRELE-
formula and the new framework with exponentially distributed buffer times is very small for 
the observed scenarios. As one might expect the assumption of small minimum headway 
times variance and taking the average in the original STRELE-formula is not contemporary 
on the one hand and seems to generally overestimate the expected knock-on delays on the 
other hand for exponentially distributed buffer times. 
     Around half of the scenarios show negligible differences in the nominal capacity leading 
to an average of 3.2% (0.88 trains) less capacity in a 5-hour period. In two extreme cases, the 
STRELE-formula underestimates the capacity by 4.33 trains and overestimates by 0.97 
trains. 
     The Gamma distribution is an expansion of the Exponential distribution and allows 
covering more complex buffer time structures in the schedule. We observed the results of a 
Gamma (3) distribution, which can be depicted in Fig. 4, and its behaviour differs from the 
previous result. The STRELE-formula could not capture such schedule structures leading to 
an underestimation of an average 4.8% (1.46 trains) in nominal capacity. In contrast to the 
STRELE results, the infrastructure manager would be able to operate up to 5.84 trains more 
respectively operates up to 2.90 trains too much with respect to the same quality as before in 
the observed scenarios. 
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Figure 3:    The difference in nominal capacity between the new framework with 
exponentially distributed buffer times and STRELE-formula. 

 

 

Figure 4:    The difference in nominal capacity between the new framework with gamma 
distributed buffer times and STRELE-formula. 
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Figure 5:    The difference in nominal capacity between the new framework with 
degenerated distributed buffer times and STRELE-formula. 

     The Degenerate distribution fits best for periodic schedules where fitting a continuous 
distribution with decent quality fails. Therefore, it can be seen as generalisation of all the 
other distributions representing the exact buffer times in the schedule. 
     The STRELE-formula can calculate nominal capacities for highly periodic timetables but 
is not designed to do so. Hence, leading to an average 7.6% (2.35 trains) underestimation of 
the nominal capacity for the given scenarios. In the extrema, it leads to an overestimation of 
2.61 trains and an underestimation of 8.33 trains in the five-hour period. 
     In summary, the nominal capacity can be computed for a broad class of buffer time 
distributions. It is now particularly possible to deal with periodic schedules. The results show 
that it is necessary to incorporate the buffer times in the schedule, to dismiss the assumption 
of exponentially distributed buffer times and the requirement of similar train characteristics 
corresponding to close to average minimum headway times. 

3.4  Computation time analysis 

The calculation of the knock-on delays within the extended STRELE-framework is more 
complex than the evaluation of the original closed STRELE-formula. For every one of the 𝑚 
trains the expected impact on the following 𝑛 trains has to be calculated for the first-order 
and higher order knock-on delays in 𝑂ሺ1ሻ. In summary this leads to a computational 
complexity of 𝑂ሺ𝑛 ⋅ 𝑚ሻ. For real instances the computation time lies within a few seconds 
such that the determination of the buffer times within the schedule and the calculation of 
minimum headway times should be the main time consumers in the capacity analysis. 

4  CONCLUSION 
The current state-of-the-art process to calculate the nominal capacity of a railway line has 
been presented and extended. It has been shown that a refinement of the STRELE-formula 
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has been necessary due to the critical assumptions of exponentially distributed buffer times 
and similar minimum headway times. The developed framework is based on the derivation 
of the STRELE-formula and can be viewed as an enhancement of the existing method 
enabling infrastructure managers to better assess periodic schedules.  
     Furthermore, it has been demonstrated in the parameter study that the extension was 
required. Due to current limitations buffer time distributions different from exponentially 
distributed could not be considered in detail. The error made was quite significant – leading 
to over- or underestimations of the nominal capacity of up to 1.67 trains per hour in the 
observed scenarios. It became clear that the nominal capacity is dominated by the underlying 
buffer time distribution. 
     The method is comparably easy to implement and use and can be utilised by infrastructure 
managers outside of Germany, too. 
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